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Abstract. We improve the utility of the Risk-calibrated Supersparse
Linear Integer Model (RiskSLIM). It is a scoring system that is an in-
terpretable machine learning classification model optimized for perfor-
mance. Scoring systems are commonly used in healthcare and justice.
We implement feature discretization (FD) in the hyperparameter opti-
mization process to improve classification performance and refer to the
new approach as FD-RiskSLIM. We test the approach using two med-
ical applications. We compare the results of FD-RiskSLIM, RiskSLIM,
and other machine learning (ML) models. We demonstrate that scoring
models based on RiskSLIM, in addition to being interpretable, perform
at least on par with the state-of-the-art ML models such as Gradient
Boosting in terms of classification metrics. We show the superiority of
FD-RiskSLIM over RiskSLIM.

1 Introduction

Machine Learning (ML) starts to play an important role in domains like health-
care where making high stake decisions is common. Examples of such domains
include cancer prognosis [8], hypertension outcomes [5], heart diseases [16], and
many others. Typically researchers focus on the predictive performance of the
ML models. Gradient Boosting, Random Forest, or Artificial Neural Networks
are considered state-of-the-art algorithms that show superior performance to
simpler models like Decision Tree or Linear Regression. However, over the last
few years regulations outlined in the General Protection Data Regulation (GDPR)
and in particular ”right to explanation” [13] emphasized the importance of ML-
algorithm trustability, transparency, and fairness and have sparked a discussion
around important needs for interpretability of ML models. In our research, we
focus on algorithms that generate models with a high level of predictive perfor-
mance and low complexity which are interpretable or explainable [25].

This work focuses on improvements of the Risk-calibrated Supersparse Lin-
ear Integer Model (RiskSLIM) introduced in [23] which is an interpretable ML
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model achieving accuracy comparable to black-box models mentioned before. We
demonstrate that our improved interpretable RiskSLIM algorithm outperforms
them for healthcare-related examples used here.

The main contributions of this paper: (1) we add feature discretization (FD)
to RiskSLIM algorithm [23], (2) we compare FD-RiskSLIM with RiskSLIM and
other classical ML techniques. We use two examples of medical applications,
namely the prediction of heart-failure patient outcome and the prediction of the
outcome of kidney cancer treatment. We demonstrate that the performance of
our interpretable models (FD-RiskSLIM and RiskSLIM) is comparable or even
superior to classical non-interpretable models such as Random Forest or Gradient
Boosting. It is important to note that we optimize all algorithms used in this
paper in the same way, using the algorithm for hyperparameter optimization
(see section 3.3).

2 Related Research

Our research was focused on medical decision support based on scoring sys-
tems. Scoring models are sparse linear models with integer coefficients that make
them interpretable. Many popular scoring systems like Simplified Acute Physiol-
ogy Score (SAPS) [15], Systemic Inflammatory Response Syndrome (SIRS) [4],
Acute Physiologic Assessment and Chronic Health Evaluation (APACHE) [14],
Stroke Risk Assessment in Atrial Fibrillation (CHADS2) [12], Thrombolysis in
Myocardial Infarction (TIMI) [3] to name a few. The models were built by do-
main experts based at least partially on their experience. In Figure 1, a scoring
model CHADS2 is presented. The CHADS2 index was created by including in-
dependent risk factors: prior cerebral ischemia, history of hypertension, diabetes
mellitus, congestive heart failure, and age of 75 years. Other factors like high
blood pressure or sex were not included based on domain expertise even though
similar scoring systems developed by others take them into account. The points
contributing to the overall score were assigned arbitrarily. However, they were
validated with the use of an exponential survival model which measured how the
rate of stroke was affected by 1-point increases in CHADS2.

Other classical scoring systems such as SAPS [15] were built with the use
of machine learning techniques. Features contributing to the overall SAPS score
were selected with the use of cross-validation. The final model exposed twenty
relevant features, but the complexity of the model was reduced by using logistic
regression.

Our method is built on a novel approach to scoring systems introduced in
[22]. The authors developed SLIM, the predecessor of RiskSLIM, which can build
scoring systems directly from data with no necessity of using domain knowledge.
With the use of SLIM, the authors managed to predict Obstructive Sleep Ap-
nea using various information available for the patients using polysomnography
results as the ground truth[24]. Data used for such prediction included stan-
dard medical information such as age, BMI, gender, diabetes, smoking, and past
problems with the heart reported by patients. Authors demonstrated that the
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Fig. 1. Structure of CHADS2 scoring system. Sum of points evaluates to the risk as
presented.

scoring system built by them performed better than the commonly used STOP-
BANG [7] scoring system, which in addition to features used by SLIM took
into consideration symptoms reported by patients. The same scientific group
used the successor of SLIM, RiskSLIM to predict seizures. The prediction was
based on patterns in continuous electroencephalography (cEEG) [21]. Authors
created a new scoring system 2HELPS2B and demonstrated that it performed
as well as neural networks, but with important advantages of interpretability
and transparency [20].

3 Methods

3.1 Risk-calibrated Supersparse Linear Integer Model (RiskSLIM)

RiskSLIM was introduced by Ustun and Rudin in 2019 [23]. It is a scoring
system similar to the predictive models designed by humans over the last century
(e.g. CHADS2 [11]). However, contrary to the traditional models, RiskSLIM
determines integer score points (which are coefficients of the linear model) relying
solely on the data, using non-linear integer optimization, instead of obtaining
score points from experts. Authors assumed that domain knowledge may be
incorporated in a form of specific constraints to the input and output variables.
It was shown that RiskSLIM allows the creation of scoring systems that give
accurate and interpretable results for decisions related to medicine and criminal
justice [24], [21], [26].

To train a RiskSLIM model, a mixed-integer, non-linear problem with hard
computational complexity has to be solved. It follows that the computation for a
highly-dimensional problem is time-consuming and often impractical in medical
settings. The approach uses constraints to make score points to be small integers.
The objective function is a log-loss (the same as used in the logistic regression)
that is minimized during model training. As a result, we get risk-calibrated
scoring systems, in which predicted risks agree with risks calculated directly
from the data [19]. The formula which is used for the estimation of the risk
of the event under consideration (stroke, cancer death) consists of an intercept
value and a calculated integer score which is a sum of all score points provided
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by the model (score points are added to the score if the corresponding feature is
present in the analyzed event):

1

1 + exp(−intercept− score)
, (1)

where the intercept in the expression (1) is determined during the model training.

Table 1. Sample numerical feature discretized using 3 subspaces represented by
columns with white background. Discretization is done with overlapping (top image)
and with disjoint regions (bottom image). In FD-RiskSLIM a number of subspaces
and threshold values are hyperparameters that are optimized (see section 3.3). For
presented experiments (see section 4) we utilized disjoint regions.

3.2 RiskSLIM with Feature Discretization (FD-RiskSLIM)

The original RiskSLIM algorithm assigns at most a single coefficient (number of
score points) to a given feature, so in a case when there is a potential non-linear
relation between the feature and the output variable the model performance can
be compromised. Such a single RiskSLIM coefficient is similar to a coefficient
of a linear regression model where modeling non-linear relations is difficult. We
designed the tool which allows us to divide the space of a numerical feature
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into subspaces (discretize it), so every subspace can have a different coefficient
assigned.

The subspaces may be overlapping or disjoint from each other. For overlap-
ping subspaces, one can define binary relation (lesser than, lesser or equal than,
equal to, greater or equal than, greater than) between the actual feature value
and a bin edge found by the selected discretization method. Table 1 presents a
feature that is discretized in two ways, with overlapping and disjoint ranges as
the output. For overlapping subspaces (upper part of the table) bin edges are
values 4.0 and 13.67 and binary relations are lesser than and greater or equal for
4.0 and greater or equal for 13.67. For this kind of discretization, there can be
many 1s in a row. For disjoint subspaces (lower part of the table) such binary
relations are not applied. For this kind of discretization, there can be only a
single 1 in a row.

To find appropriate discretization, an optimization algorithm is applied. The
resulting bins depend on chosen discretization strategy (e.g. uniform, quantile,
k-means, MDLP, etc.). In the optimization process hyperparameters like a num-
ber of bins for quantile discretization or maximum depth of a tree for MDLP
discretizer are tuned. We also optimize RiskSLIM-specific hyperparameters such
as a number and a magnitude of output coefficients and an intercept value. In
our case, the goal of the optimization was to achieve maximal accuracy, but one
can specify other metrics such as F1-score, Matthews correlation coefficient, etc.
The full algorithm of FD-RiskSLIM is the following:

1. Define hyperparameters for RiskSLIM, as a grid of parameters,
2. Define hyperparameters for feature discretization, as a grid of parameters,
3. Pass these grids to the hyperparameter optimization framework,
4. Select the best model which is found by hyperparameter optimization,
5. Using a data test set compute the metrics of the model’s performance.

3.3 Implementation

To perform a fair comparison of the performance of different machine learning
algorithms, we optimized hyperparameters for all ML methods used in this paper
using the Optuna hyperparameter optimization framework [2]. We wrapped the
Optuna in a class to create a reusable tool to optimize any model, with any
number and type of hyperparameters.

For feature discretization, we designed a solution that allows one to apply a
discretizer of a choice. We provided the functionality that wraps the discretizer
and exposes its ability through the constant interface. As a proof of concept, we
used KBinsDiscretizer from scikit-learn library [17], which can use a few strate-
gies of discretization (uniform, quantile, k-means) and the MDLP (Minimum
Description Length Principle) discretizer [10].

For RiskSLIM we optimized hyperparameters that specify the number of
coefficients (number of features used for risk calculation), their value (small
non-zero integers), and the intercept (see Fig 1). For FD-RiskSLIM we also
optimized hyperparameters of feature discretization, which involved finding an
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optimal number of bins and the position of their edges as described in section
3.2.

We used RiskSLIM implementation by Ustun and Rudin [23] available on
https://github.com/ustunb/risk-slim.

4 Experiments

We conducted experiments using two real-world medical datasets to demonstrate
the application of FD-RiskSLIM. In the first experiment described in section 4.1
we compare its performance to the performance of RiskSLIM. We also compared
our results with results obtained by others on the same dataset. In the second
experiment, we applied RiskSLIM, FD-RiskSLIM, and other ML methods that
we implemented to the original dataset describing the survival of patients with
kidney cancer (section 4.2).

4.1 Prediction of death of patients with heart failure

The first set of experiments involves the dataset containing the medical records
(13 features) of 299 heart failure patients collected at the Faisalabad Institute
of Cardiology and the Allied Hospital in Faisalabad in Punjab, Pakistan in 2015
[1]. We test FD-RiskSLIM on the classification task of patient death during the
observation period as in [6] where authors used the same heart-failure dataset.
We followed the same methodology for model training and performance evalua-
tion as in [6]. We split the dataset into 80% for the training set and 20% for the
test set. As in [6], we used the following metrics: accuracy, F1 score, Matthews
correlation coefficient (MCC), and the area under the ROC curve to measure
the performance of RiskSLIM and FD-RiskSLIM.

We built the following four models. We created RiskSLIM and FD-RiskSLIM
models by using all the features and RiskSLIM and FD-RiskSLIM models using
only 2 out of 13 features. This choice was inspired by authors of [6] who predicted
the survival only from serum creatinine and ejection fraction features ignoring
the other 11 features. We scaled the features using a min-max (0-1) scaler as
it ensures small final values of a score calculated with a ready scoring system.
The models are presented in Figure 2. Even if we passed all the features for
training the output risk scoring systems A and B contain only part of them as
the underlying algorithm apart from minimizing loss, it minimizes the number
of outputted coefficients. The resulting risk formula differs between risk scoring
systems as it also includes interception coefficient which can differ for different
models.

Tables 2 and 3 show performance metrics. The results for models other than
RiskSLIM and FD-RiskSLIM come from [6]. We followed the same methodology
of performance evaluation. We assumed 50% of the risk threshold for positive
evaluation to compute the accuracy. FD-RiskSLIM performed the best by far.
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Fig. 2. A and B are models trained on all features for RiskSLIM and FD-RiskSLIM,
respectively. C and D are models trained on features including only serum creatinine
and ejection fraction for RiskSLIM and FD-RiskSLIM, respectively. To obtain score we
multiply the vector of Features by the vector of Points. A and C risk scoring systems
contain continuous features only in the range 0-1. B and D risk scoring systems contain
categorical features only with values 0 or 1.

Discussion We found that RiskSLIM models perform superior to other machine
learning models. This is a surprising finding and initially, we suspected that
we may simply compute the metrics differently, on a different test set, etc.,
compared to [6]. However, in the second experiment (section 4.2) we found similar
superiority when we compared RiskSLIM with ML models that we implemented
and optimized on identical test sets.

One of the greatest advantages of scoring systems is their clarity and in-
terpretability. Only a small subset of features and simple formula are needed
to quickly evaluate risk even using a piece of paper and a pen. This simplicity
and interpretability cannot be achieved for models like Random Forest, Gradi-
ent Boosting, or Support Vector Machine. These scoring systems also directly
expose feature importances. Essentially, deciding with the use of this system,
one knows which feature contributes to the risk and by how much. The highest
the absolute number of points assigned by a model to a given feature the biggest
impact it has on the final risk.

When we consider interpretable ML models the Decision Tree model natu-
rally comes to mind. We present the example in Figure 3. It consists of four leaf
nodes and it is simple and easy to interpret due to the shallow depth of the tree.
However, the performance (averaged) of this model is substantially worse than
RiskSLIM (accuracy: 0.735, F1: 0.532, ROC AUC: 0.675, MCC: 0.372). Another
disadvantage of the Decision Tree model is that it forces conditions to be checked
in a given order, while RiskSLIM allows to evaluate them in any order.
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Table 2. Comparison of performances of the models trained on all the features. Results
are sorted by MCC. All results except for RiskSLIM comes from [6] and represent means
computed over the test set.

Table 3. Comparison of performances of the models trained on serum creatinine
and ejection fraction features only. Results are sorted by MCC. All results except for
RiskSLIM and FD-RiskSLIM are reproduced from [6] and represent means computed
over the test set.

4.2 Prediction of outcomes of kidney cancer treatment

We also performed experiments on two datasets of medical records of patients
with kidney cancer (metastatic renal-cell carcinoma) related to treatment using
sunitinib and everolimus drugs. The datasets come from the National Institute of
Oncology in Warsaw, Poland [9]. Most of the features in the datasets are binary
or categorical (tumor grading, metastases, and other diseases), but there are also
some numerical features such as age, weight, BMI, lymphocytes, leukocytes, and
neutrophils. There are two outcome variables: (1) progression-free survival (PFS)
time which is the length of time during and after the treatment of cancer, that
a patient lives with cancer but it does not get worse, given in years, and overall
survival (OS) time which is the length of time from the beginning of treatment
to death, given in years. The data are right-censored but in this work, we ignored
this as our main goal was to demonstrate the application of RiskSLIM algorithm.
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Fig. 3. Decision Tree model trained on all the features.

We selected two classification tasks to compare the performance of explain-
able methods (RiskSLIM and FD-RiskSLIM) with other state-of-the-art ML
methods. We predict whether PFS and OS times are longer than their respec-
tive medians.

We transformed the original datasets by dropping irrelevant features and
features with a substantial ratio of missing values (over 20%). We concatenated
these two datasets to increase the total number of records. Only common features
were kept in the final dataset. An additional categorical feature denoting the type
of the treatment was added. The final dataset consisted of 149 events (rows) with
50 features.

For comparison, we also applied the following classification models: K-Nearest
Neighbors, Decision Tree, Random Forest, Gradient Boosting, Support Vector
Machine with the radial kernel, and Support Vector Machine with linear kernel.
We divided the dataset into subsets for training and testing, in proportions 80:20,
respectively. Splits were repeated 100 times and results are provided as averages.

Figure 4 shows scoring systems obtained for both classification tasks. Most
of the features from the original dataset are categorical or binary therefore the
discretization was applied only to four of them (BMI, lymphocytes, leukocytes,
and neutrophils). All the numerical features were scaled with the use of a min-
max (0-1) scaler. Scoring systems denoted as A and B allow calculating the risk
of OS being longer than the median. Scoring systems denoted as C and D are
classification models for PFS longer than the median.

Tables 4 and 5 present comparison of the performance of the different clas-
sification models. As for experiments presented in the section 4.1 for RiskSLIM
models we assumed that the risk greater or equal to 50% evaluates to the positive
class. For models listed in both figures we performed hyperparameter optimiza-
tion using Optuna implemented as described in section 3.

Discussion For both classification tasks, RiskSLIM performs as well as the
state-of-the-art models like Gradient Boosting or Random Forest. FD-RiskSLIM
performs better which is also consistent with findings of the experiment with the
heart failure described in section 4.1.
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Fig. 4. A and B are scoring models of risk for OS longer than median for RiskSLIM
and FD-RiskSLIM. C and D are scoring models PFS longer than median for RiskSLIM
and FD-RiskSLIM. To obtain the score we multiply the vector of Features by the vector
of Points. Explanations for feature names are provided in the Appendix.

Most of the points present in risk scoring systems shown in Figure 4 are
negative. This indicates that they decrease the chance that someone would
live without progression or overall longer than the median time. Interestingly,
RiskSLIM/FD-RiskSLIM use G1 and G3 features (tumor grades 1 and 3) but
do not use G2 and G4. We speculate that if G1 increases the chance and G3
decreases then G2 might have no contribution (e.g. coefficient equal to 0). Also,
class imbalance may play a role as, for example, only less than 5% of the samples
in the dataset have cancer grade 4 (G4).

As for previous experiments in the section 4.1, apart from predictive ac-
curacy, we are also interested in knowledge representation. RiskSLIM scoring
systems have feature importance and their strength are provided explicitly. The
evaluation of risk for new patients goes fast as there are just several coefficients
that have to be summed and passed to the risk formula.

The clinical interpretation of the model is beyond the scope of this work.
However, it is of great practical importance and we will pursue this direction of
research in collaboration with our clinical colleagues in future work.

For comparison of explainability, we also built Decision Tree models for both
classification tasks. They are presented in Figure 5 and Figure 6. These trees
are not sparse and easy to work with due to a small number of rules. However,
their performance is worse and they can not evaluate the risk, they allow for
classification only.
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Table 4. Comparison of performances of the models built for predicting whether overall
survival time is longer than a median. Results are sorted by MCC.

Table 5. Comparison of performances of the models built for predicting whether
progression-free survival time is longer than a median. Results are sorted by MCC.

5 Conclusions

RiskSLIM is capable of making accurate and interpretable predictions at the
same time outperforming complex and non-interpretable black-box models in
certain applications which we explored in this paper. Interpretability became one
of the most important factors when it comes to making high stake decisions [18]
e.g. in medical domains which underlines the importance of explainable models
such as the ones considered here. Adding discretization makes this approach
even better. The drawback of RiskSLIM is its high computational demand as
model training is longer by orders of magnitude in comparison to models such as
Decision Tree, Random Forest, or Gradient Boosting. Also feature discretization
introduced by us here as a part of data preprocessing increases substantially
model training time.

In future work, we plan to incorporate feature discretization into the model
building stage to improve efficiency and reliability. Additionally, in the future
work we will investigate results stability. We also plan to apply it to other do-
mains.
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Fig. 5. Decision Tree model trained for predicting whether OS is longer than the me-
dian.

Fig. 6. Decision Tree model trained for predicting whether PFS is longer than the
median.
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7 Appendix

Explanations for the features listed in Figure 4. G1: binary, from tumor grading, de-
notes low grade (tumor well differentiated), NEUT > UT: binary, 1 if concentration
of neutrocytes exceeds upper threshold of a range of normal values, Heng1: binary,
Heng scale, neutrophils: continuous, scaled with min-max (0-1) scaler, amount of
neutrophils, MSKCC2: binary, MSKCC (Memorial Sloan Kettering Cancer Center)
scale, lymphocytes between 2.13 (inc.) and 5.21 (inc.): binary, 1 if amount of
lymphocytes is inside this range, G3: binary, from tumor grading, denotes high grade
(tumor poorly differentiated), distant lymph nodes: binary, 1 if tumor metastasis
in the distant lymph nodes, number of other cancers: numeric, number of other
cancers (metastasis) than: lungs, liver, bones and distant lymph nodes, AH: binary,
denotes if someone suffers from arterial hypertension, T2: binary, cancer staging (T1 -
T4), LDH > 1.5xUT: binary, lactate dehydrogenase activity, 1 if exceeds 1.5 x upper
threshold of a range of normal values, leukocytes between 3.21 (inc.) and 4.49
(inc.): binary, 1 if amount of leukocytes is inside this range, HGB < LT: binary, 1 if
hemoglobin concentration exceeds lower threshold of a range of normal values, Ca >
UT: binary, 1 if calcium concentration exceeds upper threshold of a range of normal
values.
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