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Abstract. Niemann-Pick Class 1 (NPC1) disease is a rare and neurode-
generative disease, and often metabolomics datasets of NPC1 patients are
limited in the number of samples and severely imbalanced. In order to im-
prove the predictive capability and identify new biomarkers in an NPC1
disease urinary dataset, data augmentation (DA) techniques based on
computational intelligence are employed to create additional synthetic
samples. This paper presents DA techniques, based on the addition of
noise, on oversampling techniques and using conditional generative ad-
versarial networks, to evaluate their predictive capacities on a set of Nu-
clear Magnetic Resonance (NMR) profiles of urine samples. Prediction re-
sults obtained show increases in sensitivity (30%) and in F1 score (20%).
In addition, multivariate data analysis and variable importance in projec-
tion scores have been applied. These analyses show the ability of the DA
methods to replicate the information of the metabolites and determined
that selected metabolites (such as 3-aminoisobutyrate, 3-hidroxivaleric,
quinolinate and trimethylamine) may be valuable biomarkers for the di-
agnosis of NPC1 disease.

Keywords: Metabolomics · Data augmentation · Niemann-Pick type C
· Bioinformatics · Lysosomal storage disease.

1 Introduction

Niemann–Pick type C disease (NPC, OMIM 257220) is a very rare neurodegen-
erative lysosomal storage disease caused by mutations in two genes NPC1 and
NPC2 [22]. NPC affect approximately 1:100000 live births, although the NPC1
mutations account for 95% of cases observed. NPC involves the altered lysosomal
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storage of sphingosine, and leads to a loss of lysosomal calcium ions, a process
accompanied by the accumulation of unesterified cholesterol and glycosphin-
golipids [24, 19], along with decreased acidic store calcium levels [11]. Usually,
NPC disease presents in childhood with clumsiness, ataxia, learning difficulties,
vertical gaze paralysis, and dysphagia, together with cataplexy, epilepsy, and
hepatosplenomegaly. Additionally, adult-onset illness may occur, and this may
be associated with a neuropsychiatric presentation [22]. NPC disease also in-
volves neuroinflammation, neuronal apoptosis, and oxidative stress [4].

For the diagnosis and prognostic monitoring of such diseases, metabolomics
strategies are valuable because bioanalytical dataset systems can be analysed
under pre-established conditions determined by the experimental design. The
non-invasive nature of metabolomics and the close link of this type of data with
the phenotype, make it an ideal tool for pharmaceutical and preventative health.
Metabolomics is also applicable to the discovery of biomarkers, small molecules
known as metabolites, as a support for decision making. Selected metabolites
and their concentrations can be used to determine the status of different groups
of samples based on their detection in control group samples, or in those collected
from patients with a specified disease. Urine samples such as those analysed in
this work contain informative metabolites that can be easily analysed for the
purpose of discovering new biomarkers.

Notwithstanding, currently there is a clear lack of global, untargeted metabo-
lomics studies focused on investigations of lysosomal storage diseases, with only a
small number of studies being reported [21, 20, 18]. These studies justify the value
offered by NMR-based metabolomics data analysis techniques, and the use of
composites of both bioanalytical techniques and computational intelligence tech-
niques is therefore further evolving and becoming more popular [13]. However,
metabolomics datasets are often limited in the number of samples and heavily
imbalanced. In this case, the lysosomal storage disorders are genetically-distinct
and metabolically-related, rare inherited diseases. Because of this, the prior col-
lection and the parental ethical consent required are often highly challenging hur-
dles to surmount. Additionally, obtaining a sufficient number of biofluid samples
for NMR or other analyses adds to this complexity.

In this work, computational intelligence based Data Augmentation (DA)
methods are used to generate more observations. DA has proven to be an effec-
tive technique to improve the performance of machine learning models, especially
for applications related to problems involving datasets consisting of images [9],
also in biomedical applications [6, 23, 14]. The application of DA techniques to
datasets that are not images, signals or time series, is more complex. Experts
find it easier to evaluate a generated image, being able to measure its quality
and distinguish whether it is a ‘synthetic’ or a ‘real’ image. However, this type
of evaluation conducted by human experts is not feasible when applications in-
cludes genomic or clinically-relevant metabolic data. DA techniques such as noise
injection techniques [26, 17] or the application of SMOTE techniques (synthetic
minority oversampling technique) [2] are available to handle this type of dataset.
A more recent technique known as Generative Adversarial Networks (GANs) has
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been proposed to be suitable for the analysis of these types of datasets [8]. GAN
models have shown an impressive level of success in generating realistic images,
and recently, it has been shown that they can also be applied as a DA method for
datasets without any type of spatial or temporal structure [5, 16], also in some
biomedical applications [10, 12, 7]. To the best of the authors knowledge, there
are no recent DA studies that show its application on metabolomics analysis.

Considering all the above aspects, the main objectives of this work are: (1) to
apply different state-of-the-art DA methods to a small size metabolomics dataset
aimed at obtaining an increase in the prediction performance of urine samples
belonging to NPC1 disease patients, in order to demonstrate their usefulness in
this research domain; (2) to analyse the ability of these DA methods to replicate
the information of the metabolites using conventional forms of multivariate data
analysis, such as partial least squares - discriminatory analysis (PLS-DA).

2 Materials

This study presents a UK-based clinical cohort consisting of 13 untreated NPC1
patients and 47 corresponding parental heterozygous carriers. The selection pro-
cess for the NPC1 patient cohort was carefully conducted to select only patients
not receiving any therapeutic agents. This process avoids any complications aris-
ing from the presence of urinary 1H NMR resonances attributable to such drugs
and their metabolites in the urinary metabolite profiles explored. The data for
this study was collected with informed consent and previously approved by the
appropriate Research Ethics Committee (06/MRE02/85). Urine samples were
collected, thawed and centrifuged to remove any cells and debris. The sample
mixtures were then transferred to NMR tubes for in-depth analysis.

Single-pulse 1H NMR analysis of human urine samples were obtained using a
Bruker Avance AV-600 spectrometer (Queen Mary University of London facility,
London, UK) operating at a frequency of 600.13 MHz, as described in [21]. The
intense H2O/HOD signal (δ = 4.80 ppm) was suppressed via gated decoupling
during the delay between pulses. Chemical shift values were internally referenced
to the methyl group resonances of acetate (s, δ = 1.920 ppm), alanine (d, δ =
1.487 ppm), creatinine (>NCH3 s, δ = 3.030 ppm) and lactate (d, δ = 1.330
ppm). Through a complete consideration of chemical shift values, coupling pat-
terns and coupling constants, the identities of metabolite resonances present in
spectra acquired were routinely assigned. These assignments were cross-checked
with the Human Metabolome Database (HMDB) [25] and confirmed by one- (1D)
and two-dimensional (2D) correlation (COSY) and total correlation (TOCSY)
spectroscopic techniques.

The urinary dataset matrix consists of 60 spectra × 33 1H NMR-assigned
metabolite predictor variables. This dataset was generated using macro proce-
dures for line broadening, zero filling, Fourier-transformation and phase and
baseline corrections, together with the subsequent application of a separate
macro for the “intelligently-selected bucketing” (ISB) processing sub-routine.
All procedures were performed using the ACD/Labs Spectrus Processor 2012
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software package (ACD/Labs, Toronto, Ontario, Canada M5C 1T4). This ISB
strategy ensured that all bucket edges featured did not coincide with 1H NMR
resonance maxima, and hence this approach avoided the splitting of signals across
separate integral regions. Prior to data augmentation experiments, all sample 1H
NMR profiles were autoscaled column-(metabolite variable)-wise.

3 Data Augmentation Methods

Addition of Noise The first of the methods used in this work for data aug-
mentation is a simple and straightforward one, that can be easily applied, and
has the ability to lead to competent results. Specifically, the method randomly
selects samples and modifies a maximum of a 25% of the features present in the
data. The process of generating a new feature value x̃ from the original value x
is mathematically described in Eq. 1. The noise value obtained from a random
normal distribution (denoted “RND”) with a standard deviation/variance of 1.0,
is added to the original value for the chosen feature. The resulting “noisy” value
is controlled so that it does not exceed the real limit values established for its
feature (MIN_Value and MAX_Value). A standard deviation of 1.0 at the ran-
dom normal distribution is sufficient to generate a sample that is not too far
from the actual sample.

x̃ = min(MAX_Value,max(MIN_Value, x+ RND(−1.0, 1.0))) (1)

A variation of the addition of noise method described above has been de-
signed for balancing purposes. The method abbreviated as “Noise Bal”, differs
from the standard method in that it applies the random selection only to sam-
ples belonging to the minority class. Therefore, it only modifies and generates
synthetic samples that belong to the minority class in an oversampling process.
The rest of the method follows the same noise addition process described before.

SMOTE Technique In clinical cohorts of rare diseases, it is easier to have more
control samples available than samples from patients that present the disease.
Therefore, medical datasets, as well as metabolomics datasets, are often imbal-
anced. The traditional oversampling method to reverse this situation by applying
DA is SMOTE (Synthetic Minority Oversampling Technique) [2]. SMOTE uses
a k-nearest neighbour algorithm on the minority class, rather than random sam-
pling with replacement. In this way, the algorithm performs an interpolation
between each sample x and its selected neighbours. The interpolation computes
the difference between the sample x and each of the neighbours in the feature
space, multiplies the difference of each feature by a random normalisation be-
tween 0 and 1, and adds this value to the feature of original sample x. This
interpolation results in the synthetic samples generated by SMOTE being lo-
cated within the space between the selected neighbours and the sample x. One
disadvantage of the SMOTE algorithm application is the lack of control over the
number of samples to generate. This technique is ineffective on well-balanced
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datasets, since oversampling aims to create a fully balance augmented dataset.
Another disadvantage, derived from the interpolation process, is the creation of
synthetic samples that do not follow the distribution of the original dataset.

Conditional GAN The DA application of deep learning models known as
Generative Adversarial Networks (GAN) [8] has shown an impressive success in
the generation of realistic images. Specifically, the model considered in this work
is the Conditional GAN (CGAN) [15], since a supervised task is performed. The
CGAN model is a variant of the vanilla GAN model in which the information
contained in the sample label y is taken into account. The generation of synthetic
samples using GAN models occurs by learning the distribution of the original
dataset. With this aim, GAN models have a structure divided into two neural
networks trained simultaneously, the generator and the discriminator, yielding
a confrontation between both so that they are able to learn from each other.
In this manner, the objective of the discriminator network (D) is to estimate
the probability of the sample arises from the real distribution or is a generated
sample. However, the purpose of the generator network (G), which takes as input
a noisy random distribution z and the condition y, is to produce a distribution
G(z) (synthetic sample) with features that approximate those present in the
real samples. Therefore, the generator intends that the discriminator cannot
distinguish these synthetic samples from the real ones.

min
G

max
D

Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))] (2)

The two behaviours described above within the competitive process can be
distinguished in the CGAN objective cost function (Eq. 2). One part is related
to achieving a better recognition of those samples that belong to the real dis-
tribution, while the other is related to achieving a better recognition of those
synthetic samples created by the generator network. Thereby, the discriminator
network is updated based on the error associated with the ability to perceive
whether the samples are real or false, expressed in Eq. 3; and the generator net-
work is updated from the error identified for false sample recognition, modelled
by Eq. 4.

max
D

Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))] (3)

min
G

Ez∼pz(z)[log(D(G(z|y)))] (4)

4 Experiments and Results

The experimentation process followed is shown in Fig. 1. A stratified division of
the original dataset into training and test sets is performed, allowing to maintain
total independence between the synthetic data generation process and the eval-
uation of the experiments. Due to the reduced number of samples present in the
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benchmark dataset, a split of 60% of samples for training and 40% for testing
is conducted. Depending on the DA method, the synthetic data generation pro-
cess uses the training set to create the desired number of samples, following the
procedures described in the previous section. Before the augmentation process,
a principal component analysis (PCA) is performed on the training dataset.
This process removes any high level of correlation (multicollinearity) between
the variables of the metabolomics dataset. In this way, the score vectors are
obtained and the training, test and synthetic datasets are transformed. Sam-
ples values are represented by their principal components instead of the original
values from metabolomic variables.

Train Set

(60% Samples)

Augmented

Train Set

Test Set

(40% samples)

Original

Dataset

10-fold cross validation

Generative

Method

Random

Forest
Results

Synthetic

Samples

Fig. 1. Flow diagram of the whole experimentation process.

After this transformation process, the augmented training set is formed by
adding synthetic generated data to the training one. A Random Forest system
[1] is used for classifying the samples. Random Forest are essentially an ensem-
ble of decision trees and establishes the outcome based on the individual tree
predictions. The python scikit-learn package is used, with 1001 trees, bootstrap
samples to build each tree, Gini impurity for tree splitting and 6 predictors se-
lected at each node. The classifier model employs the augmented set to perform
the training and the prediction is measured using the test set data. The en-
tire process of data division, generation, training and evaluation is carried out
through a cross-validation procedure, employed for obtaining a better estimate
of the metrics, in order to avoid small dataset sampling biases.

4.1 Classification Performance

Test results obtained from the application of the different DA methods are shown
in Table 1. To show whether the application of DA improves the classification
performance, the results are compared with those obtained with the original
non-augmented dataset, indicated in the table as ‘None’. In order to be more ex-
haustive in the study, the results obtained with the combination of samples from
two different DA models are included. ‘Comb 1’ refers to the results obtained
with a combination between the CGAN model and the SMOTE method, and
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‘Comb 2’ refers to the results obtained with a combination between the CGAN
model and the Noise Bal strategy, when a 500% augmentation level is applied
with Noise Bal.

Table 1. Test results acquired with a random forest system using each DA method
and the percentage of augmentation applied.

Aug. Model Percent Accuracy Specificity Sensitivity F1 score
None None 85.42 ± 1.0 97.37 ± 0.6 40.10 ± 5.6 53.33 ± 2.4
CGAN 500 85.83 ± 1.1 90.53 ± 1.3 67.99 ± 4.5 63.47 ± 3.9
NOISE 1000 86.25 ± 1.1 97.89 ± 0.4 42.02 ± 5.0 49.27 ± 5.6
SMOTE 100 87.92 ± 1.0 94.74 ± 0.4 61.93 ± 4.8 64.49 ± 4.1
NOISE Bal 500 89.17 ± 1.0 94.21 ± 0.9 70.12 ± 3.7 71.79 ± 2.8
NOISE Bal 2000 80.83 ± 1.6 82.11 ± 2.5 76.25 ± 2.9 63.87 ± 1.9
Comb 1 100 85.63 ± 1.0 90.26 ± 1.2 68.01 ± 4.0 64.67 ± 3.0
Comb 2 100 84.79 ± 1.4 87.63 ± 1.4 73.76 ± 3.9 66.68 ± 3.1

The ‘Percent’ column of Table 1 indicates the amount of synthetic data gen-
erated compared to the original set. Thus, if the number of generated samples is
the same as the training set, a percentage of 100 is reported; and if the number
of training samples is multiplied by 10, a percentage of 1000 is reported. The
remaining columns show the values (± ‘between-validation performance’ SE)
obtained for each of the test metrics. The test metrics showed are the accuracy,
specificity, sensitivity and F1 score obtained. The F1 score is the harmonic mean
of the precision and sensitivity (Eq. 5), and allows a reliable measure of the pre-
diction performance achieved in problems where sensitivity is more important.

F1 score = 2 · precision · sensitivity
precision + sensitivity

=
2TP

2TP + FP + FN
(5)

Results in Table 1 show that an improvement in test prediction accuracy,
sensitivity and F1 is achieved with almost all the DA methods compared to the
values obtained with the non-augmented dataset (‘None’). Using the Noise Bal
method with 1000% DA, the highest accuracy (89.17%) and F1 values (71.78%)
are obtained. The Noise Bal approach with 2000% reaches the highest sensitivity
values (78.8%), but with a lower accuracy (80.83%) and F1 score (63.87%).
These values show a substantial improvement compared to analysis of the dataset
without augmentation.

Additional analyses were performed reviewing the impact of the number of
samples generated with different DA methods on the test results obtained. Three
test metrics (accuracy, specificity and sensitivity) obtained with three different
DA methods (CGAN, Noise and Noise Bal) versus the number of instances on a
logarithmic scale, are presented in Fig. 2. The results obtained with the CGAN
model indicate a negative correlation between the number of instances created
and the specificity and accuracy gain of the prediction. However, a positive corre-
lation for the sensitivity gain was also observed. For the Noise Bal method, there
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8 F. J. Moreno-Barea et al.

Fig. 2. Comparisons of the specificity, accuracy and sensitivity obtained with different
DA methods versus the logarithm of the number of instances generated. Dots (solid)
represent the results obtained with the CGAN model, squares (dotted) those with the
NOISE method, and triangles (dashed) those with the NOISE Bal method.

is clearly a significant positive correlation between sensitivity and the number of
instances created with this strategy. The specificity obtained decreases slightly
until the abscissa axis reaches a value of 6.5, when it presents a significant neg-
ative correlation. The influence of specificity on the accuracy gain is noticeable,
since they decreases at the same time when a large number of samples are gener-
ated. Finally, the values obtained for the metrics are approximately stable with
respect to the number of instances generated with the standard Noise method.

4.2 Augmented Datasets Analysis

An important objective is to analyse how the DA methods were able to repli-
cate the metabolomic information present in the dataset. The configuration of
the augmented samples can be visualised in a two-dimensional space (compo-
nent 2 vs component 1) through a partial least squares - discriminatory analysis
(PLS-DA), using MetaboAnalyst v4.0 software (University of Alberta and Na-
tional Research Council, National Nanotechnology Institute (NINT), Edmonton,
AB, Canada) [3]. This provided a means to check the information contained in
the augmented dataset and compare this with the information in the original
samples, analyzing how the distribution and clustering is affected.
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Fig. 3. PLS-DA component 2 versus component 1 scores plot for the original dataset,
and the augmented datasets with SMOTE, the Noise Bal method and CGAN model.
Colour codes: red circles, heterozygous carrier control urine; green diamond, synthetic
control; blue triangles, NPC1 disease urine; purple inverse triangles, synthetic NPC1.

Figure 3 (top left) shows the PLS-DA results obtained by using the original
NPC1 dataset. This reveals two significant groups for the samples that corre-
spond to the possible classes of “disease state”, with an area where both clusters
converge. The cluster belonging to the control group appeared as a compact
cluster, while the cluster conformed by the NPC1 disease samples was more dis-
persed. The results of PLS-DA after adding the samples generated with SMOTE
are shown in Fig. 3 (top right). Here, it can be clearly seen how the creation of
samples through SMOTE works. The synthetic samples are distributed through-
out the ‘real’ NPC1 disease cluster, from the interpolation process. In this case,
the small convergence zone between clusters avoids the SMOTE method disad-
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vantages. Figure 3 (bottom left) shows the distribution of the augmented dataset
created by using the Noise Bal method with respect to the original samples.The
distribution of the samples is similar to the distribution observed with the origi-
nal dataset, and with the augmented dataset produced by the SMOTE. Through
the noise injection process, the synthetic samples belonging to the NPC1 disease
class are found grouped around the original samples that they modify.

The PLS-DA scores plot when using the augmented dataset with the CGAN
model is shown in Figure 3 (bottom right). Contrary to previous DA methods,
CGAN is not an oversampling technique, so the model creates samples belonging
to both classes. The generated samples modify the dispersion and angle presented
by the component analysis, causing the control group less compact. Although
it is still possible to differentiate both groups, with a larger convergence zone.
The generated synthetic samples fit satisfactorily the distribution of the ’real’
samples for both groups, with some of them generated in the convergence zone.

3−Hydroxyisovaleric Acid

Acetic Acid

2−H−3−Methylbutyric Acid

Trimethylamine−N−oxide

L−Glutamine

Propylene Glycol

Glucuronic Acid

Creatine

L−Valine

Nicotinamide Riboside

N−Acetylneuraminic Acid

3−Hydroxyisobutyric Acid

Succinic Acid

Trigonelline

Trimethylamine

Quinolinic Acid

3−Aminoisobutyric Acid

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
VIP Scores

Original NOISE Bal
 0 1

High

Low

Fig. 4. Variable importance parameter (VIP) scores obtained from the PLS-DA applied
to the original dataset and the application to the Noise Bal augmented dataset. Colour
codes: blue circles, original VIP; red triangles, Noise Bal augmentation VIP.

The variable importance in projection (VIP) scores with respect to compo-
nent 1 were also obtained using PLS-DA. The VIP scores allow to analyse the
differences between the heterozygous carrier group and NPC1 disease urine sam-
ples, measuring the importance of each metabolite in the differentiation process.
Figure 4 shows the VIP scores for the top 17 metabolites obtained from the orig-
inal dataset and a comparison with the VIP scores obtained from the augmented
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dataset with balanced addition of noise. The coloured boxes indicate the relative
concentrations of the corresponding metabolite in each “disease state” group on
the original dataset. Considering that the values >1.00 are significant, the most
outstanding metabolite of the analysis in the original set was 3-aminoisobutyric
acid with a VIP score equal to 1.89. With the Noise Bal augmentation, the
most prominent metabolites were trimethylamine with a VIP score of 1.68 and
3-hydroxyisovaleric acid with a VIP score of 1.86. These values are higher than
those obtained for the original dataset. Conversely, the 3-aminoisobutyric acid
obtained a VIP score of 1.45 and propylene glycol obtained a VIP score of 0.4
with the Noise Bal dataset, values lower than the original ones. Notwithstanding,
the analysis reveals a total of nine metabolites that obtain similar VIP values.

Table 2. PLS-DA VIP scores obtained using augmented datasets with the SMOTE,
Noise Bal method and CGAN model for the top 17 metabolites with original dataset.

Metabolite Original SMOTE Noise Bal CGAN
3-Aminoisobutyric Acid 1.89 1.51 1.45 1.22
Quinolinic Acid 1.45 1.60 1.33 1.05
Trimethylamine 1.41 1.81 1.68 0.79
Trigonelline 1.21 1.12 1.23 1.79
Succinic Acid 1.20 1.13 1.07 0.70
3-Hydroxyisobutyric Acid 1.19 1.56 1.48 0.93
N-Acetylneuraminic Acid 1.13 0.93 1.26 0.93
Nicotinamide Riboside 1.12 0.68 1.44 1.51
L-Valine 1.11 1.38 1.23 0.66
Creatine 1.08 0.78 0.65 1.66
Glucuronic Acid 1.07 1.10 1.17 1.38
Propylene Glycol 1.05 0.43 0.40 1.14
L-Glutamine 1.03 0.96 0.77 0.70
Trimethylamine-N-oxide 1.03 1.05 0.93 1.49
2-H-3-Methylbutyric Acid 1.02 1.02 0.99 1.13
Acetic Acid 1.00 1.05 0.98 0.77
3-Hydroxyisovaleric Acid 0.99 1.69 1.86 0.58

The results obtained for each of the top 17 marker metabolites shown in Fig-
ure 4 are summarised in Table 2. The analysis reveals certain metabolites showing
analogous VIP scores for the SMOTE and Noise Bal approaches. Amongst these,
the following metabolites should be highlighted: trimethylamine, 3-hydroxyisova-
leric acid, 3-hydroxyisobutyric acid, 3-aminoisobutyric acid, and trigonelline.
Both methods (SMOTE and Noise Bal) are oversampling ones, thus increasing
the number of samples for the NPC1 disease class. This significantly influenced
the analysis, which indicates a greater relevance of these metabolites to sepa-
rate this group from the heterozygous carriers. Regarding the analysis using the
augmented set with CGAN, the results show fewer similarities. The most dif-
ferentiating metabolites with respect to the original dataset are trimethylamine
with a VIP score of 0.79, compared to the original value equal to 1.41; and
creatine with a VIP score of 1.66, and a value of 1.08 with the original dataset.
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5 Conclusions

The different state-of-the-art techniques for Data Augmentation (DA) employed
in this work clearly offer much potential regarding the analysis of metabolomics
datasets, as these predominantly comprise small numbers of sample-donating
participants, as it is the case of the NPC1 data examined here.

The results shown in Table 1 indicate a great improvement of test prediction,
with an increase in predictive accuracy. This renders the balanced addition of
noise (Noise Bal) the best DA method for this purpose. The augmented dataset
reaches approximately a 4% improvement in accuracy compared to the analysis
performed on the original dataset. Since the dataset is quite imbalanced, predic-
tive accuracy is not the most representative metric, as it is more important that
the largest number of patients with the disease be diagnosed as such. Therefore,
most representative prediction metrics for this type of imbalanced problem are
sensitivity and F1 score. Table 1 shows that when performing data augmentation
with the Noise Bal method and 500% DA, an approximate 30% improvement in
sensitivity and a 20% improvement in F1 score can be obtained.

In order to determine the ability of DA methods to replicate metabolic in-
formation, a PLS-DA was performed. The SMOTE and Noise Bal method show
a good capacity to replicate the information of the metabolites from samples
representing NPC1 disease. The results obtained from the analysis of the CGAN
augmentation show the ability of this model to replicate information that fits the
distribution of the ‘real’ samples. However, because CGAN can generate sam-
ples for both classes in the convergence zone of the clusters, the PLS-DA results
differ from the original one. Finally, the VIP scores results obtained revealed
a series of biomarkers which may be valuable for distinguishing between the
urinary 1H NMR profiles of NPC1 patients and their heterozygous healthy con-
trols. These included the branched-chain amino acid valine, 3-aminoisobutyrate,
3-hidroxivaleric, quinolinate and trimethylamine. The selected metabolites and
their relative importance rankings were found to be similar to those reported in
a previously conducted study of the dataset analysed, and without any form of
DA strategies [21].

In conclusion, DA techniques constitute a suitable approach to increase the
prediction performance of Niemann-Pick Class C1 (NPC1) disease activity in pa-
tients when analysing 1H NMR urinary metabolic datasets. DA techniques are
capable of generating good quality synthetic data that lead to an increase in sen-
sitivity of 30%, allowing the identification of urinary metabolomics biomarkers
which will serve on the diagnosis and monitoring of the severity of patients with
NPC1 disease. Future research directions will focus on testing different machine
learning algorithms analysing their robustness in the prediction of rare diseases.
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