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Abstract. Enormous potential of artificial intelligence (AI) exists in
numerous products and services, especially in healthcare and medical
technology. Explainability is a central prerequisite for certification pro-
cedures around the world and the fulfilment of transparency obligations.
Explainability tools increase the comprehensibility of object recognition
in images using Convolutional Neural Networks, but lack precision.
This paper adapts FastCAM for the domain of detection of medical
instruments in endoscopy images. The results show that the Domain
Adapted (DA)-FastCAM provides better results for the focus of the
model than standard FastCAM weights.
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1 Introduction

Explainable Artificial Intelligence (XAI) is essential for artificial intelligence
products and services in healthcare and medical technology and is a central pre-
requisite for certification procedures around the world [7, 2, 5]. How black box
models such as neural networks arrive at their results cannot be understood due
to their complex processes. However, explainability tools can be used to increase
comprehensibility at least for local explanation of individual decisions. In image
processing with neural networks, one already speaks of an explanation of a de-
cision when the areas in the input image that have led to the classification of an
object are highlighted [2]. In this case, the inner workings of the model are not
explained, only the data that is most significant for the decision-making process
is highlighted, for example the focus of the model. The motivation of the work to
optimize the weights of FastCAM for the endoscopy domain (DA-FastCAM), to
achieve better results as the standard FastCAM. The paper works on endoscopy
instrument recognition to perform plausibility tests to achieve trustable Convo-
lutional Neural Networks (CNNs) based object detection. The aim is to support
the certification of AI-based applications in medicine based on plausibility tests.
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2 Related Work

In SHAP (SHapley Additive exPlanations) [6] each input feature is weighted
regarding model output. All combinations of features are considered to determine
the importance (positive and negative) of a single feature. Integrated Gradients
[10] visualizes the importance of the input features of a CNN that contribute
to the output of the model via heat maps. GradCAM (Gradient-weighted Class
Activation Mapping) [9] allows generating visual explanations that highlight the
most important regions of an image that predict the feature.

3 Domain Adapted (DA)-FastCAM

The goal is to optimize the weights of the XAI framework FastCAM [8] for the
domain of endoscopy instrument recognition. FastCAM generates a focus area,
which is an explanation for the results of object classification. The optimized
FastCAM weights more accurately reflect the reality of the focus for the target
domain compared to the original weights which are an average of the weights
for the ImageNet, CSAIL Places and COWC datasets [8]. Areas that are impor-
tant for the recognition are the focus of the model (Fig. 1 - Focus area). Focus
areas that are not connected to main focus area are distraction area (Fig. 1 -
Distraction area). Unimportant (out-of-focus) areas are masked (Fig. 1 - Masked
area). Masked areas that occlude a part of the instrument are the occlusion ar-
eas (Fig. 1 - Occlusion area). Tests with the original FastCAM weights (Table
2) showed high occlusion, although the model recognized them correctly and a
significant occurrence of distraction areas.

Fig. 1: Areas within an explanation frame

4 Optimization Approach for DA-FastCAM

The dataset used is CholecSeg8k [4] which provides segmentation for 8080 images
of laparoscopic cholecystectomy. Each image annotated at the pixel level for
thirteen classes common in laparoscopic cholecystectomy. The two tool classes
grasper and L hook electrocautery (from here on referred to as hook) are the
focus of this paper. The AI model utilized in this paper is the AlexNet based
model by Ranem et al.3 which has an average test accuracy of 67% for the
Cholec80 [11] dataset. The AI model was used to classify frames of CholecSeg8k
dataset.
3 https://github.com/amrane99/CAI-Classification
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4.1 Optimization Framework and Algorithms

The Optuna framework4 was used to optimize the FastCAM mask weights of
the five 2-D convolution layers of AlexNet. The metric used to evaluate the
optimization is the Root-Mean-Square Difference (RMS). The RMS is calculated
for a segmented frame and the explanation frame computed by FastCAM (for
the input frame); see Fig. 2b, 2c and 2a. All RMS values are summed, and the
average is calculated. The goal of the optimization is to minimize this average
RMS value. The algorithms CMA-ES [3] and TPE [1] were used for optimization.

(a) Input (b) Segmented (c) Explanation

Fig. 2: Example frames of the RMS calculation

5 Evaluation of DA-FastCAM
A series of experiments were conducted for the optimization of the weights: a)
selected frames of grasper and hook together, b) selected frames of grasper, c)
selected frames of hook, d) grasper of frame 312 and e) hook of frame 28926.
Table 1 provides an visual overview of the most important results. Numerical
experiment results can be seen in Table 2, the best and worst RMS for the
original and optimized weights can be seen in Table 3. 10 frames for the grasper
and 10 frames for the hook were selected for the optimization. These 20 frames
represent the typical views of the instruments and their position in the frame
with different recognition rates by the model.

5.1 Optimization of Weights for Grasper and Hook Together

The weights are optimized for the selected frames of the grasper and hook.

Grasper & Hook CMA-ES "312 - Grasper - Best": the focus includes the
entire instrument (A) and does not cut off the upper half of the jaw (B). The
distraction area changes its shape (C). "613 - Grasper - Worst": the focus in-
cludes the transition between the jaws and the outer tube (A) and a sharper
edge to the masked area (B). However, a new occlusion area is created that
covers the fenestrated opening in the jaws (C), considered a small disadvantage.
"2850 - Hook - Best": the focus includes the transition between the white body
and the outer tube (A). The distraction area changes its shape (B). "28911 -
Hook - Worst", the focus is reduced so much that only a small section of to the
white body of the instrument is visible (A). Result: Except for "28911 - Hook
- Worst" a clearer focus was created.
4 https://optuna.org/
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Grasper & Hook TPE The results are identical to Section Grasper & Hook
CMA-ES; see Section 5.1 for discussion and visual presentation of the results.

5.2 Optimization of Weights for Grasper

The weights are optimized for the selected frames of the grasper. As seen in
Table 3, the use of CMA-ES results in better RMS values compared to TPE.
Therefore, for the following experiments the TPE algorithm is omitted.

Grasper CMA-ES Despite the optimization for graspers, the results are vi-
sually identical to the results of Grasper & Hook CMA-ES, Grasper & Hook
TPE and Grasper CMA-ES, therefore see Section 5.1 for discussion and visual
presentation of the results.

5.3 Optimization of Weights for Hook

The weights for the selected frames are optimized for the Hook.

Hook CMA-ES "293 - Grasper - Best" includes the transition between the
jaws and the outer tube (A). The distraction area (B, C) changed their shape
and the distraction area (C) is divided into two parts. "561 - Grasper - Worst":
no occlusion area on the grasper mechanism (A) but grasper is more occluded
(B). The distraction area changed its shape (D). An additional distraction area
has been created (C). "28605 - Hook - Best" the focus includes more area of
the outer tube (A). "2850 - Hook - Worst" the hook is completely occluded (A)
and the focus area widens (B). Result: Except for "2850 - Hook - Worst", a
clearer focus was created after optimization. Even if only hooks was optimized,
the grasper focus was also optimized.

5.4 Optimization of Weights for Grasper of Frame 312

The weights are optimized for the frame 312. This frame was selected because
it was the worst occluded explanation frame with the original weights for all
selected graspers. The aim to see if it is possible to improve the masking of one
grasper without degrading the results of the other graspers.

Grasper - 312 CMA-ES "312 - Grasper - Optimized for", the focus includes
both parts of the jaws (A) and the transition between the jaws and the outer tube
(B). The two distraction areas (C, D) change their geometry and the distraction
area (D) is divided into two parts. Result: Even if optimization was done on a
specific grasper, for all graspers the focus after optimization is more precise on
the respective instruments (also hook, albeit with limitations).

5.5 Optimization of Weights for Hook of Frame 28926

The weights are optimized for frame 28926. This frame was selected because
it was the worst occluded explanation frame with the original weights for all
selected hooks. The aim is to see if it is possible to improve the masking of one
hook without degrading the results of the other hooks.
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Hook - 28926 CMA-ES "28926 - Hook - Optimized For" the focus contains
the white body of the instrument (A). But also contains more of the black
background (B). The distraction area is smaller but now divided into two parts
(C). Result: Even if a specific hook is optimized, for all hooks (and grasper)
except "2850 - Hook - Worst", the focus after optimization is more precise.

5.6 Optimization Result Overview

Table 2 shows the average RMS, the weights and at which epoch the optimum
was achieved. Table 3 shows the best and worst RMS values per frame for the
original weights and the optimized weights for grasper and hook. Interesting
outcomes are: First, for grasper & hook the algorithm CMA-ES and TPE have
the same RMS value and layer weights. Second, experiment grasper CMA-ES
have the same RMS value as grasper & hook (CMA-ES, TPE). Third, the CMA-
ES finds the optimal weights faster than TPE.
6 Conclusion

Experiments showed that the DA-FastCAM archives a general improvement of
the original FastCAM weights via an automated process, validated by reduced
RMS values after optimization compared to the RMS values for the original
FastCAM weights. Through this optimization, the explanation frames had in
average a smaller distraction area and a smaller occlusion area, and a more
precise focus area. For a high accuracy of object recognition (e.g. graspers) the
RMS values of the DA-FastCAM decreased significantly compared to a lower
accuracy of object recognition (e.g. hooks). It is worth mentioning, that through
the optimization of FastCAM, a bad CNN model gives bad XAI images. Opti-
mization for all frames of the grasper and hook instruments was shown to be the
best approach for optimization. It should be noted that even when optimizing
only for a specific frame of grasper, optimization can be performed on average
for all frames, whether grasper or hook, albeit with exceptions for some frames
of hook. An expected result is that in general hooks are less recognized by the
CNN model. For the choice of algorithm, the CMA-ES is recommended, as it
not only finds the best weights, but also has the best performance compared to
TPE. This is particularly important when numerous images (videos) have to be
the basis of the optimization.
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Table 2: Optimization result overview
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