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Abstract. Within the area of bioinformatics, Deep Learning (DL) mod-
els have shown exceptional results in applications in which histological
images, scans and tomographies are used. However, when gene expression
data is under analysis, the performance is often limited, further hampered
by the complexity of these models that require several instances, in the
order of thousands, to provide good results. Due to the difficulty and the
costs involved in the collection of medical data, the application of Data
Augmentation (DA) techniques to alleviate the lack of samples is a topic
of great relevance. State-of-the-art models based on Conditional Gener-
ative Adversarial Networks (CGAN) and some introduced modifications
are used in this work to investigate the effect of DA for prediction of the
vital status of patients from RNA-Seq gene expression data. Experimen-
tal results on several real-world data sets demonstrate the effectiveness
and efficiency of the proposed models. The application of DA methods
significantly increase prediction accuracy, leading by 12% with respect to
benchmark data sets and 3.15% with respect to data processed with fea-
ture selection. Results based on CGAN models outperform in most cases,
alternative methods like the SMOTE or noise injection techniques.

Keywords: Data augmentation · Gene expression · Bioinformatics ·
Deep Learning · CGAN.

1 Introduction

Deep learning (DL) models have become the state-of-the-art prediction algo-
rithms in several application tasks, translating into billions of dollars invested
by industries towards its application. With the advancement of deep network
architectures, the access to large databases and the use of powerful computing
systems, DL models have made incredible progress in a large variety of prob-
lems. DL models have a more complex structure compared to traditional machine
learning methods, as they include thousands of parameters and dozens of lay-
ers that must be adjusted during the training process, and because of this, its
application requires the use of large data sets with thousands of instances in
order achieve a better performance than traditional machine learning techniques
(shallow ANNs, SVMs, RF, etc.) [22, 7].
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In particular, in the area of bioinformatics large and readily available data
sets are scarce. Medical records are sensitive data with associated privacy prob-
lems and a difficulty to obtain patient consent for massive dissemination. Fur-
ther, gene expression data are significantly more difficult to obtain, they present
a greater dispersion and are prone to suffer from the curse of dimensionality, as
microarray data contains a greater number of features compared to the number
of samples usually available. For these reasons, the application of data augmen-
tation (DA) methods has become one of the relevant topics in the area, allowing
for the addition of new synthetic generated samples. A revision of recent state-
of-the-art works in the field related to DL models applied to genomic data sets
showed that some advantages can be observed using these models [4, 26] but we
have not found works applying DA as it is used in the present work with the
aim of improving prediction capabilities.

Like it happens with DL models, DA best results are found in computer
vision and image processing areas, where data possesses structure. Specifically,
DA models have shown impressive results in generating synthetic realistic im-
ages, based on a framework called Generative Adversary Networks (GAN) [8,
19]. Essentially, a GAN model network generates new samples from a distribu-
tion learned from the original data set, and for this purpose, the GAN produces
a confrontation between two competing neural networks that learn from each
other. Apart from the achievements of GAN models obtained in image vision,
they have proven to be useful also for the DA task with images [9, 6, 27]. Ap-
plying DA to non-image data sets is far more challenging. Experts in an specific
domain can be asked to assess the quality of a generated image and to distin-
guish a synthetic from real samples. However, this type of human expert based
evaluation is not feasible when applied to non image-sets, even less if we take
into account gene expression data. Most common methods for applying DA to
non-structured data are the SMOTE technique (synthetic minority oversampling
technique) [3] designed to deal with imbalanced data sets, and the noise injec-
tion methods as a way to prevent overfitting and improve prediction accuracy
[20, 29, 18, 17]. Nonetheless, in recent times GAN models have become one of
the reference DA methods also with other types of structured data such as time
series or signals [11, 23], with data sets without any type of spatial or temporal
structure [5, 21, 16], and also in biomedical problems [12, 14, 1].

Taking into account all the aspects mentioned above, this work has several
objectives. Current research attempts to add knowledge to the existing scientific
literature related to the application of DA with GAN models in biomedical
problems, and more specifically with gene expression data. On the other hand
we analyse modifications to state-of-the-art DA methods in order to obtain an
increase in the precision of the cancer prognosis prediction problem compared
to the traditional SMOTE and noise injection methods, which will allow the
efficient application of techniques of Deep learning-based DA to small and non-
structured data sets across multiple domains. Finally, we want to verify the
methods ability to replicate the gene expression data with the Fréchet Inception
Distance (FID), and be able to provide support for the prediction results.
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2 Methodology

We include in this section the Data Augmentation (DA) methods and models
applied to a cancer prognosis problem with different gene expression data sets.

2.1 Noise injection method

To perform DA with image sets there are some methods whose execution and
approach is simple, such as resampling, flipping, cropping, shifting, or noise
injection. To perform DA with non-image sets, some of these methods can also
be used, such as resampling, based on repeating random instances of the data,
or noise injection, based simply on modifying instances with degrees of noise.
Although the noise injection may have a simple approach, the application of a
procedure based on this method can be modified to obtain effective results [17].

The noise injection method designed randomly selects training samples and
modifies a maximum of 25% of the features. The noise is generated from a
random normal distribution with a standard deviation of 0.2 and is added to the
original value of the feature, being subsequently controlled so as not to exceed
the range of [0; 1]. A standard deviation value of 0.2 is enough to create samples
that does not stray too far from the real space of instances.

2.2 SMOTE techniques

Apart from the addition of noise to perform DA with non image data sets, in the
literature we can find some applications of SMOTE techniques (synthetic minor-
ity oversampling technique) [3] designed to generate synthetic data in data sets
that present imbalanced classes. This oversampling technique uses a k-nearest
neighbour algorithm, instead of random sampling with replacement. SMOTE
performs a random interpolation of the instance of the selected minority class
and its nearest neighbours, in order to balance the data set and operating in the
feature space. The interpolation calculates the difference between the instance
and each of the selected neighbours, multiplies the difference for each feature by
a random normalisation and adds this value to the original feature of the sample.
This process creates new instances of the minority class that are located within
this space between the sample and its neighbours.

However, this technique has certain drawbacks due to random interpolation.
One of the most notable disadvantages is the possible generation of samples
that do not respect the geometry present in the data set. The generated samples
can occupy positions in the feature space that belong to the majority class data.
Other significant drawback is that SMOTE does not allow to control the amount
of synthetic samples generated, only those necessary to balance the data set.

2.3 Conditional Generative Adversarial Networks

The standard GAN model [8] has a general structure composed by two neural
networks, called the generator and the discriminator, that are trained simultane-
ously resulting in a confrontation process. In this way, the discriminator network
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(D) tries to distinguish whether a sample comes from the real distribution or
is a synthetic sample, i.e., for the input sample x, the discriminator estimates
the probability that it belongs to the real distribution or not. The generator
network (G) gets as output a synthetic sample from a noisy random distribution
z. The purpose of the generator is create new synthetic samples with features
that approximate those present in the real samples, so that the discriminator
network will not be able to distinguish these synthetic samples as samples not
coming from the real distribution. Therefore, the generator process is opposite
to that of the discriminator, giving rise to a competitive environment.

Specifically, the model considered was the Conditional GAN (CGAN) [15], a
variant of the standard GAN model. In CGAN, the information concerning to
a condition y, the sample label or other data information is taken into account
in the network. In this way, the latent space z and the condition y are passed as
input to the generator network. This condition can be created randomly when
training the model and it can be controlled when generating synthetic samples.
The condition is also added to the input of the discriminator network, being the
same that has been used to create a synthetic sample by the generator or the
label assigned to the real sample.

min
G

max
D

Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))] (1)

The objective cost function (Eq. 1) of the CGAN model presents the be-
haviours identified with the competitive process: one related to better recognise
samples that belong to the real distribution and another related to better recog-
nise samples created by the generator. In this way, the ability of the model to
perceive whether the samples are real or fake is expressed in Eq. 2, and the error
identified with the recognition of fake samples is expressed by Eq. 3.

max
D

Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))] (2)

min
G

Ez∼pz(z)[log(D(G(z|y)))] (3)

2.4 CGAN modified Generative Process

Considering the DA process to deal with supervised benchmark problems, we
implemented modifications to the standard CGAN generative process giving rise
to the ModCGAN model. This modified model was developed in a previous work
[16]. The most significant difference from the generative process performed with
ModCGAN compared to CGAN is the use of an external classifier called “gener-
ative classifier”. This generative classifier is used to label the synthetic samples
created by the generator and discard them if they do not present enough qual-
ity. The whole generative process is shown in Fig. 1. The generative classifier is
trained with the real samples from the training set, also adding noisy samples
from two different methods: a uniform random distribution and gaussian noise
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injection. The use of these different noise sources teaches the classifier to distin-
guish real and fake samples, from pure noise (uniform random distribution) and
samples with similar aspects to the real distribution (gaussian noise injection).

In the ModCGAN generative process, the generator creates a synthetic sam-
ple from a noisy random distribution and a label, since its generative base is the
same as CGAN. However, instead of using the discriminant network, ModCGAN
uses the generative classifier to estimate the label for the synthetic sample. If
the ‘noise’ label is estimated, sample is considered fake and is discarded. On the
other hand, if the estimated label is different from ‘noise’, it means that classifier
has predicted a label from the real ones, so the sample is saved with the predicted
label. Applying this modified process, the synthetic sample may be assigned a
different label than the one used by the generator at the generative process.
Furthermore, it is possible that samples that the discriminator network could
consider fake are saved or, conversely, not save samples that the discriminator
could detect as real but that the generative classifier predicts as ‘noise’.

Generator

Generative

Classifier

Training Set Synthetic Sample

Uniform Noise

Label

Gaussian Noise

IF

Synthetic

Sample

Label
Real

Noise

Discard and Generate

Add Sample

Fig. 1. Generative DA process for the creation of synthetic data in the ModCGAN
model. When the generative model and the generative classifier are trained, the syn-
thetic sample is generated and the appropriate label is predicted. If the label represents
noise, the sample is discarded and another sample is generated, else the sample is save.

2.5 Modifications for treating unbalanced data set distribution

A possible problem that arises from generating synthetic samples with GAN
models is the so-called collapse of the model. This problem arises when the gen-
erator creates the same synthetic samples repeatedly. Also when it creates syn-
thetic samples from only one of the classes, usually from the majority class. Two
modifications, ‘Multiclass’ and ‘Balanced Multiclass’ [16], were applied to avoid
collapse of the model causing problems in the DA application. The modification
was indicated in the models with the suffixes ‘_M’ and ‘_BM’ respectively.

The GAN-based models with these modifications use two independent mod-
els. Each independent model is trained with a set that presents all the samples
that belong to one of the classes with a random selection of samples from the
other class, trying to reach a ratio of 20%. The purpose is that each generator
is able to focus on one class of the problem, always taking into account its dif-
ferences with the samples of the other class. These generators are used in an
ensemble methods process, each generating a specific proportion of samples that
are joined to produce the final synthetic data set.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_3

https://dx.doi.org/10.1007/978-3-031-08757-8_3


6 F. J. Moreno-Barea et al.

The specific number of samples generated by each generator depends on the
desired number of samples, the proportion of each class in the original data set,
and the implemented modification applied. The generative process with ‘Multi-
class’ tries to keep the original classes proportion, while with ‘Balanced Multi-
class’ it generates more samples for the minority class. It should be mentioned
that the generative process followed in both modifications remains as the original
GAN-based model, so if a sample is classified as fake or noise, the same generator
model that created this sample generates a new one. These modifications are not
intended to force the model to generate only synthetic samples that belong to
one of the classes, but rather to better adapt the distribution of the samples to
avoid collapse when the model trains with all the data.

2.6 Implementations of the models

The CGAN and ModCGAN models, and the balance control modifications,
present the same standard implementation with the exception of the specific im-
plementation of the ModCGAN generative classifier. Generator network presents
4 hidden layers with Rectified Linear Unit (ReLU) [28] as activation function
(de facto state-of-the-art activation functions in DL). Discriminator network also
presents 4 hidden layers but with Leaky ReLU [13] activation function, since it
provides more stability than ReLU in classification tasks. Both networks used
batch normalisation as regularisation technique and Adam algorithm as optimi-
sation algorithm with adaptive learning rate.

On the other hand, the classifier model used for the classification experiments
and the generative classifier for synthetic process was a deep feedforward neu-
ral network. It presents 3 hidden layers with Leaky ReLU activation function
and batch normalisation and dropout [24] at each hidden layer. The sigmoid
activation function was used in the output neuron to classify patterns. Adam
algorithm was also used as optimisation algorithm. The dropout rate applied
was 0.1, 0.5 and 0.3 in the hidden layers of the generative classifier, and 0.3, 0.6
and 0.4 in the classifier used in test prediction experiments. The L2 norm was
used in combination with dropout and batch normalisation to avoid overfitting.

2.7 Benchmark data sets

The benchmark data sets used for the experiments are freely available at The
Cancer Genome Atlas (TCGA) website, provided by International Cancer Genome
Consortium (ICGC). The data sets correspond to patients linked to 18 different
cancer types: bladder carcinoma (blca), breast carcinoma (brca), colon adeno-
carcinoma (coad), glioblastoma multiforme (gbm), head and neck squamous cell
carcinoma (hnsc), pan-kidney cohort (kipan), kidney renal cell carcinoma (kirc),
brain lower grade glioma (lgg), liver hepatocellular carcinoma (lihc), lung ade-
nocarcinoma (luad), lung squamous cell carcinoma (lusc), ovarian carcinoma
(ov), prostate adenocarcinoma (prad), skin cutaneous melanoma (skcm), stom-
ach adenocarcinoma (stad), stomach and esophageal carcinoma (stes), thyroid
adenocarcinoma (thca) and uterine corpus endometrioid carcinoma (ucec).
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The instances of these data sets represents patients affected of cancer, and
for each patient it contains a row of 20531 variables than correspond to the
expression level of a certain gene, so the data sets are RNA-Seq gene expression
profiles after applying pre-processing procedures for batch correction and RSEM
normalisation. A logarithmic (log2) transformation of the expression levels in the
data was carried out, to approximate them to a normal distribution for its use
with the predictive models. Additionally, a feature selection process was applied
using the LASSO model [25] and the Gini importance from Random Forest
method [2], reducing the number of genes. In order to perform a prediction
analysis, vital status information for each patient has been collected, which is
also freely available in TCGA. The vital status therefore supposes the label
present in the data and the objective to be predicted.

Balance =
H

log k
=

−
∑k

i=1
ci
n log ci

n

log k
(4)

Table 1 shows some characteristics of the benchmark data sets, the columns
show the name of the benchmark data set, the number of features after feature
selection (Feat.) and instances (Inst.), the proportion of classes (Bal.), and the
most significant gen according to the feature selection (Sig-Gen). Instead of
showing the percentage of instances that belong to each class, we show a measure
of balance (Eq. 4) based on the Shannon entropy (H). This measure is calculated
given the number of instances n in the data set, the number of classes k, and the
size of each class ci. If the value of Balance is 1, the set is completely balanced,
and if the value is 0, the set is completely unbalanced.

Table 1. Characteristics of the eighteen gene expression data sets studied.

Data Feat. Inst. Bal. Sig-Gen
blca 114 427 0.99 SPG7
brca 74 1212 0.64 ZNF331
coad 12 191 0.71 ALPK3
gbm 19 171 0.73 ABCB8
hnsc 10 566 0.99 SLC25A43
kipan 102 1020 0.83 BANP
kirc 88 606 0.92 DPAGT1
lgg 57 242 0.98 CCNI
lihc 11 423 0.96 EIF5B

Data Feat. Inst. Bal. Sig-Gen
luad 13 344 0.96 OR2T335
lusc 18 552 0.99 PYGB
ov 33 307 0.97 PERP
prad 27 550 0.13 SNORA16A
skcm 21 473 1.00 INSR
stad 3 450 0.96 LPPR2
stes 47 646 0.97 PRTG
thca 21 568 0.22 CXCL5
ucec 31 201 0.67 PEX11A

3 Experiments and Results

In order to keep complete independence between data generation, classifier model
training, and prediction accuracy evaluation, we performed a division of the data
set into training, validation and test sets. The synthetic data generation does not
include any samples from the test set, which is kept separate for honest external
performance testing. A 10-fold cross validation procedure is implemented in the
prediction experiments and the training folds are augmented with synthetic sam-
ples. The result of the classification process is the average of the accuracy results
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obtained for the 10-folds. This process is further repeated with 10 different seeds
to reduce possible random effects.

Table 2 shows the results obtained for the 18 data sets studied and described
previously in Table 1. First column shows the test accuracy obtained with the
original ‘raw’ data set, second column (‘FS’) shows the test accuracy when fea-
ture selection pre-processing is applied but not including any Data Augmentation
process. Next group of columns show results obtained when DA is applied on the
data sets after the feature selection process, showing the DA method used, the
test accuracy obtained and the percentage of augmentation applied to the train-
ing data set. The model with the highest accuracy evaluated on the validation
set is the indicated one. Last columns in the Table 2 show the relative difference
(Eq. 5) obtained for each of the three DA methods applied: CGAN-based mod-
els, SMOTE and noise injection. The reference results for calculating the RD are
the results obtained with the feature selection pre-processing. Last column, R̂D,
shows the maximum value for the relative difference over the results obtained
previously (indicated with bold font).

RD =
(Acc_Aug − Acc_Ref)

Acc_Ref
× 100 (5)

Table 2. Test accuracies obtained with the original data set (col. 2) and when a feature
selection method is applied (col. 3). Cols. 4-6 show the test accuracy for the best case
of the three implemented DA methods and the corresponding percentage of generated
samples. Cols. 7-10 shows Test RD for the three used methods and last column (R̂D)
the best RD obtained (see text for details).

Data Augmentation RD
Data Original FS Acc. Model Perc. CGAN SMOTE NOISE R̂D

gbm 0.6353 0.7794 0.8185 CGAN 200 5.02 -0.45 -1.21 5.02
coad 0.7015 0.7421 0.7529 CGAN 50 1.45 -5.82 -0.50 1.45
ucec 0.7250 0.7955 0.8405 NOISE 200 1.98 1.29 5.66 5.66
lgg 0.6802 0.8313 0.8413 CGAN_M 50 1.20 -1.03 0.70 1.20
ov 0.5192 0.7370 0.7921 ModCGAN_M 200 7.47 2.62 -6.56 7.47
luad 0.6071 0.6368 0.6694 CGAN_M 100 5.13 0.35 -1.48 5.13
lihc 0.6248 0.6690 0.6918 NOISE 200 1.19 1.64 3.40 3.40
blca 0.5566 0.7412 0.7636 CGAN_M 50 3.03 0.24 -0.76 3.03
stad 0.6093 0.6623 0.6708 SMOTE None 0.79 1.28 -0.91 1.28
skcm 0.5213 0.6872 0.7377 ModCGAN_BM 200 7.34 -0.37 -2.94 7.34
prad 0.8918 0.9772 0.9810 SMOTE None 0.31 0.39 0.04 0.39
lusc 0.5485 0.5624 0.5857 CGAN_BM 200 4.15 0.15 -4.98 4.15
hnsc 0.5919 0.7000 0.7388 ModCGAN_BM 200 5.54 1.50 -5.90 5.54
thca 0.9106 0.9640 0.9655 NOISE 200 0.05 -0.03 0.16 0.16
kirc 0.7239 0.7836 0.8041 ModCGAN_BM 100 2.62 0.01 2.04 2.62
stes 0.5747 0.5895 0.6033 CGAN_M 50 2.35 -0.43 0.03 2.35
kipan 0.7402 0.8265 0.8278 ModCGAN 200 0.17 -2.85 -1.31 0.17
brca 0.8072 0.8531 0.8567 ModCGAN 100 0.42 -0.90 0.09 0.42
Mean 0.6667 0.7521 0.7745 2.79 -0.13 -0.80 3.15
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The results on Table 2 show an average improvement of 3.15 % in R̂D and 2%
in test prediction accuracy using DA methods compared to the case when only
feature selection is implemented. Using the FS pre-processing and DA methods a
substantial improvement of approximately 11% is achieved over the original raw
benchmark data sets, noting that the feature selected data set already permit
to achieve almost a 9% increase in accuracy over the original data set, and thus
obtaining a further increase with DA techniques is a relevant achievement.

The results indicate that for 13 out of 18 data sets best accuracy results are
obtained through DA based on CGAN models, also obtaining in this case the
best average results with a RD value of 2.79 % . The noise injection method is
the best one for 3 data sets and finally SMOTE leads in two cases; however both
methods lead to negative RD values. In addition, 12 of 18 methods generate a
percentage of samples greater than or equal to 100, so the models at least double
the number of samples present in the training set. Regarding the efficacy of the
different CGAN-based models (i.e. this analysis does not take into account noise
injection or SMOTE methods), ModCGAN is the best option for 10 data sets
while CGAN is the preferred method for the remaining 8.

Figure 2 shows the relationship between the test accuracy obtained for the
data sets with FS and DA application and the obtained using the original raw
benchmark data sets. The results show that the improvement in accuracy ob-
tained from DA with respect to FS and the original results tends to be greater
for those sets whose original accuracy is lower.

Fig. 2. Relationship between accuracy obtained with the processed data sets (DA
and FS) and the original ones. Crosses represent the results obtained with augmented
data sets and cross-hairs those obtained when only feature selection is applied. The
continuous line represents the identity function.
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10 F. J. Moreno-Barea et al.

Fig. 3. Relative prediction accuracy difference (RD) vs the logarithm of the number of
instances (top) and vs the balance (bottom). The lines are a linear regression adjusted
to the data. Crosses and continuous line represent the results obtained with the CGAN
model, dots and dashed line those obtained with the NOISE method, and cross-hairs
and dashed-dotted line those obtained with SMOTE.

To analyse the influence of the data sets size on the precision obtained, we
graph in Fig. 3 (top) the test relative difference RD obtained with each DA
method versus the number of instances in a logarithmic scale on the x-axis. A
linear regression model was fit to results for each type of DA method, obtaining
for the CGAN-based models a correlation coefficient of -0.29, which indicates a
moderate negative correlation between the number of instances and the predic-
tion accuracy gain. Similar with the linear regression model fitted for the noise
injection results, with a correlation coefficient of -0.14. The results obtained
with SMOTE show that the relationship between the number of instances and
the prediction accuracy gain remains stable, with a correlation coefficient of 0.04.

In a similar way, Fig. 3 (bottom) shows the test relative difference RD ob-
tained with each DA method versus the balance degree. Figure results does not
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include data sets prad and thca due to their low balance value with respect to
the rest (0.13 and 0.22 respectively), being outliers and preventing a good visu-
alisation of the results. The correlation coefficient obtained for the CGAN-based
models is 0.4, indicating a positive correlation between balance and prediction
accuracy gain. The linear regression model fitted with SMOTE results is simi-
lar, with a correlation coefficient of 0.44. On the contrary, the results with the
addition of noise method indicate a negative correlation between balance and
prediction accuracy gain, with a correlation coefficient of -0.43.

In order to analyse how the DA methods used in the experimentation were
able to replicate the information present in the gene expression data set, the
Fréchet Inception Distance (FID) [10] is computed. FID is a metric used to
measure the quality of the images generated by GAN models, but FID is also
applicable to any data generation application. Equation 6 shows the FID calcu-
lation to compare the distribution r with the distribution g from mean values of
the real (µr) and the generated (µg) vectors, the trace of the matrix (Tr) and
the covariance matrix of the vectors (Σr, Σg).

FID = ∥µr − µg∥2 +Tr(Σr +Σg − 2(ΣrΣg)
1/2) (6)

Table 3. Mean Fréchet Inception Distance (F̂ ID) obtained with each data augmen-
tation model with respect to the real Train and Test distributions for each data set.
Lower values indicate more similarity between synthetic and real samples.

SMOTE NOISE CGAN ModCGAN
Data Train Test Train Test Train Test Train Test
gbm 0.150 0.893 0.179 0.602 0.407 0.769 0.206 0.644
coad 0.076 0.469 0.072 0.334 0.451 0.771 0.147 0.377
ucec 0.287 1.699 0.299 1.232 1.305 1.790 0.741 1.440
lgg 1.015 1.615 0.351 1.486 2.082 2.686 1.359 2.224
ov 0.264 0.490 0.103 0.434 0.745 1.099 0.256 0.554
luad 0.040 0.133 0.028 0.101 0.283 0.314 0.046 0.103
lihc 0.030 0.046 0.018 0.040 0.089 0.124 0.021 0.046
blca 1.441 2.037 0.541 2.060 3.170 3.820 2.057 2.471
stad 0.002 0.005 0.003 0.007 0.112 0.099 0.042 0.039
skcm 0.175 0.266 0.041 0.134 0.277 0.429 0.107 0.196
prad 0.269 0.000 0.047 0.094 1.020 1.795 1.142 2.687
lusc 0.086 0.135 0.029 0.093 0.280 0.326 0.051 0.105
hnsc 0.028 0.039 0.011 0.028 0.111 0.146 0.015 0.033
thca 0.223 1.083 0.222 0.623 0.801 1.265 0.411 0.804
kirc 0.378 0.949 0.341 1.127 3.413 3.657 1.359 1.708
stes 0.171 0.390 0.143 0.394 1.440 1.640 0.576 0.771
kipan 0.212 0.794 0.319 0.971 3.448 3.624 1.818 2.096
brca 0.128 0.700 0.206 0.682 2.064 2.336 1.052 1.291
Mean 0.276 0.652 0.164 0.580 1.194 1.483 0.634 0.977

Mean FID values (F̂ ID) are obtained from the comparison of the synthetic
class 0 distribution with the real class 0 distribution and the synthetic class 1
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distribution with the real class 1 distribution. The F̂ ID results for SMOTE only
refer to the minority class comparison. Table 3 shows the F̂ ID values obtained in
the comparison with the real Train and Test distributions with the synthetic set
generated with the different DA methods used, making a comparison between
CGAN and ModCGAN.

The results reported in the Table 3 reveal that the addition of noise gener-
ates samples with great similarity to the original sample distribution. Samples
generated by this method obtain the lowest F̂ ID value, 0.164 on average mea-
sured on training samples. For the case of applying the SMOTE method, the
analysis reveals a level of similarity slightly greater than the noise based one,
with low F̂ ID values (0.28 and 0.65 with respect to train and test). Regarding
GAN-based methods, these add more variability to the augmented data sets, as
samples generated with CGAN have less similarity for train and test data sets,
reaching the highest average values of F̂ ID (1.19 and 1.48 with respect to train-
ing and testing). On the other hand, the samples generated with ModCGAN
model present lower values of F̂ ID, which indicates a greater similarity with
the real samples. The F̂ ID values are almost half of those obtained with CGAN
(0.63 and 0.98).

4 Conclusion

In this work, we proposed the application of different state-of-the-art techniques
for Data Augmentation (DA), with the aim of improving the prediction accuracy
in patient prognosis analysis that can be obtained when data sets of RNA-Seq
gene expression profiles are studied in different types of cancer. The results in-
dicate that the application of DA methods can lead to an increase in prediction
accuracy of approximately 3% (all the tested methods are evaluated, choosing the
best one according to the validation error). This improvement has been achieved
with respect to the data sets after applying a feature selection technique, as the
improvement in prediction accuracy over the original raw data is approximately
11%. We observed also that conditional GAN models can greatly improve the
generalisation results as a 2.79% increase was obtained, while alternative models
like SMOTE and noise injection lead to negative results. Additionally, the qual-
ity of the generated samples was analysed to explain the performance achieved
by each DA methods, and for this purpose the Fréchet Inception Distance (FID)
was measured. From this analysis, we concluded that the noise addition method
generates more similar samples, while CGAN-based models offers more vari-
ability. In the light of these results, we can draw the conclusion that greater
variability in the augmented sets increases the potential of the prediction mod-
els to correctly classify test samples (never presented before to the classification
model) that may not be similar to training ones.

In conclusion, DA techniques constitute a suitable approach to increase the
prediction performance in patient prognosis analysis with data sets of RNA-Seq
gene expression profiles. DA techniques based on CGAN models are capable of
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generating good quality synthetic data that lead on average to a 3% relative
prediction increase. In relation to this, several future studies are planned, ex-
tending the application of DA methods to other gene expression data sets and
bioinformatics tasks.
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