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Abstract. Pulmonary Hypertension (PH) is a severe disease character-
ized by an elevated pulmonary artery pressure. The gold standard for PH
diagnosis is measurement of mean Pulmonary Artery Pressure (mPAP)
during an invasive Right Heart Catheterization. In this paper, we investi-
gate noninvasive approach to PH detection utilizing Magnetic Resonance
Imaging, Computer Models and Machine Learning. We show using the
ablation study, that physics-informed feature engineering based on mod-
els of blood circulation increases the performance of Gradient Boosting
Decision Trees-based algorithms for classification of PH and regression
of values of mPAP. We compare results of regression (with threshold-
ing of estimated mPAP) and classification and demonstrate that metrics
achieved in both experiments are comparable. The predicted mPAP val-
ues are more informative to the physicians than the probability of PH
returned by classification models. They provide the intuitive explanation
of the outcome of the machine learning model (clinicians are accustomed
to the mPAP metric, contrary to the PH probability).

Keywords: Pulmonary Hypertension · Regression · Gradient Boosting
Decision Trees · Mathematical Modelling

1 Introduction

Pulmonary Hypertension is a severe disease difficult to diagnose with multiple
possible root causes [6]. For many years, PH was identified if a mean Pulmonary
Artery Pressure (mPAP) of a patient at rest was equal to or above 25 mmHg.
Recently, it has been suggested to lower the threshold to 20 mmHg [19]. The
precise measurement of mPAP is non-trivial and requires conducting an invasive
Right Heart Catheterization (RHC) – the gold standard for diagnosing PH. This
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procedure carries risks, requires patient’s preparation, trained staff, highly spe-
cialized equipment, it is expensive and time consuming. To lower the probability
of complications it has to be performed at a specialized facility [5].

Non-invasive estimation of mPAP using medical imaging, mathematical mod-
eling, and machine learning (ML) is an option to avoid issues related with RHC.
Mathematical models, such as a Windkessel model, allow diagnosis of the vascu-
lar system parameters [23]. Different ML algorithms enable extracting knowledge
about data samples and their performance usually increases with the addition
of features from multiple domains.

In this paper, we present methods based on Gradient Boosting Decision Trees
(GBDT) for non-invasive PH diagnosis. We use classic GBDT, DART (Dropouts
meet Multiple Additive Regression Trees) [22] - a method utilizing dropouts of
random trees during training - and GOSS (Gradient-based One-Side Sampling)
[10] – a technique that uses different than GBDT process of training (retaining
samples with large gradients and randomly dropping the ones with low gradi-
ents). We conduct analysis on data from 352-patient cohort and perform two
tasks: classification of PH and regression of mPAP. As predictors, we use de-
mographics features, measurements derived from Magnetic Resonance Imaging
(MRI) and features obtained from 0D and 1D mathematical models [15].

Our main contribution is the demonstration of the ablation study, which
shows, that physics-informed feature engineering based on mathematical models
of blood circulation increases the performance of ML algorithms for classification
and regression of PH and values of mPAP, respectively. Another significant con-
tribution of this paper is comparison of utilities of classification and regression
approaches for the detection of PH. While the regression achieves similar classi-
fication metrics (after thresholding of estimated mPAP), the values of predicted
mPAP are more informative to the physicians than the probability of PH re-
turned by classification models. As such, they provide the intuitive explanation
of the outcome of the machine learning model (clinicians are accustomed to the
mPAP metric, contrary to the PH probability).

2 Related work

Multiple ML algorithms (utilizing features from various modalities like echocar-
diography, Computed Tomography (CT), or MRI) have been integrated for the
purpose of the PH classification. In [14], five ML models were used and com-
pared with each other. Boosted Classification Trees, Lasso Penalized Logistic
Regression (LPLR), Random Forest (RF) for Regression, RF for Classification
and Support Vector Machines (SVM) were adopted for mPAP prediction or PH
classification basing on the echocardiographic measurements and basic patients
characteristics (age, sex, BMI, body surface area). In [26], echocardiographic
data was used to distinguish between pre- and post-capillary PH with one of
the nine tested ML models (SVM, AdaBoost, LR, RF, Decision Trees (DT),
K-Nearest Neighbours, GBDT, LogitBoost and Linear Discriminant Analysis
(LDA)).
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In [7], measurements derived from CT were used to train six ML classifiers
to evaluate the probability of mPAP higher than 15 mmHg. Another approach
was to record the heart sounds with a digital stethoscope to gather parameters
for PH classification using LDA [2]. The analysis of the sounds revealed specific
patterns in PH patients. In [1], it was noted that the sounds collected by phono-
cardiogram can be applied for binary classification of PH with SVM. In [16],
it was shown that MRI measurements combined with parameters from 0D and
1D computational models can be successfully used for PH and non-PH patients
classification with DT. In our approach, we study the impact of mathematical
models parameters on classification and regression. We also show the comparable
performance of PH diagnosis with GBDT-based models in both tasks.

With the rise of Deep Learning (DL), multiple approaches of detecting PH
directly from images, videos, or electrocardiography (ECG) signals were investi-
gated. For example, chest X-Ray images can be utilized for binary classification
of potential PH patients using Capsule Network with residual blocks [12]. In
[27], three popular DL networks (ResNet50, Xception and Inception V3) were
trained as predictors of PH. As shown in [13], an ensemble neural network can
pose as a screening tool for PH from a 12-lead ECG signal.

ML can also be utilized for determining patients at risk of having Pulmonary
Arterial Hypertension (PAH) from clinical records. In [11], it was shown that
GBDT can help in screening for PAH based on their medical history. ML-based
tools were also developed for the purpose of blood pressure estimation - in [25],
Support Vector Machine Regression (SVR) models were applied for the predic-
tion of the patient’s blood pressure from the physiological data. Another example
is an application of Multilayer Perceptron (MLP) for regression of systolic blood
pressure using basic knowledge about patients (BMI, age, habits etc.) [24].

3 Methods

In this section, we describe our approaches to noninvasive PH diagnosis. We
present the details of our dataset and introduce mathematical models which
enabled the acquisition of physics-informed features. Finally, we train GBDT-
based models on multiple feature sets to perform mPAP regression and PH
classification experiments.

3.1 PH dataset

Table 1 presents the available features of patients who were suspected with PH
and underwent MRI and RHC within 48 hours.

The medical procedures were performed at the Sheffield Pulmonary Vascular
Disease Unit. The RHC procedure was conducted with a balloon-tipped 7.5-Fr
thermodilution catheter. The PH was defined if measured mPAP ≥ 25 mmHg.
Using these criteria out of the cohort of 352 patients 286 were diagnosed with
PH. From 286 patients with PH, 142 had Pulmonary Arterial Hypertension,
86 had Chronic Thromboembolic PH, 35 PH cases were due to lung diseases
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Table 1. PH dataset with patient related data, parameters derived from 0D and 1D
models and measurements from MRI imaging. In the appendix (section 8) we provide
explanations for the feature names. P-value tests a null hypothesis that the coefficient
of the univariate linear regression between a feature and mPAP is equal to zero.

No PH PH

feature cnt mean std cnt mean std p-value

mPAP, mmHg 66 19.67 3.34 286 46.95 13.08

Demographics

age, years 66 56.61 13.78 286 61.69 14.24 0.242
gender, female/male 66 43/23 286 173/113 0.549
who, no. 56 2.52 0.54 285 3.04 0.44 < 0.001
bsa, m2 65 1.88 0.25 286 1.82 0.22 0.24

0D and 1D models

Rd, kg/m
4s 66 6.08E+07 4.94E+07 286 1.46E+08 2.53E+08 < 0.001

Rc, kg/m
4s 66 7.94E+06 7.80E+06 286 9.17E+06 1.87E+07 0.072

C, m4s2/kg 66 9.92E-09 6.71E-09 284 3.94E-04 6.65E-03 0.669
Rtot, kg/m

4s 66 6.83E+07 5.38E+07 286 1.56E+08 2.62E+08 < 0.001
Wb/Wtot 66 0.24 0.10 286 0.39 0.11 < 0.001

MRI

rac fiesta, % 66 26.39 15.43 286 13.68 8.93 < 0.001
syst area fiesta, cm2 66 7.62 2.17 286 9.78 2.78 < 0.001
diast area fiesta, cm2 66 6.08 1.71 286 8.66 2.57 < 0.001
rvedv, mL 66 118.93 36.00 286 159.58 58.27 < 0.001
rvedv index, mL/m2 66 53.78 21.83 286 73.92 39.39 < 0.001
rvesv, mL 66 55.41 20.68 286 102.48 49.92 < 0.001
rvesv index, mL/m2 66 24.64 10.84 286 47.63 30.19 < 0.001
rvef, % 66 53.32 9.86 286 38.05 13.59 < 0.001
rvsv, mL 66 63.52 22.61 286 57.15 23.39 0.026
rvsv index, mL/m2 66 29.14 13.90 286 26.32 15.02 0.292
lvedv, mL 66 116.57 33.09 286 91.30 27.33 < 0.001
lvedv index, mL/m2 66 53.16 21.90 286 41.25 19.20 < 0.001
lvesv, mL 66 34.27 15.66 286 31.32 14.56 0.23
lvesv index, mL/m2 66 16.85 16.81 286 14.01 8.18 0.194
lvef, % 66 71.13 8.54 286 65.81 10.92 < 0.001
lvsv, mL 66 82.30 23.30 286 59.97 19.93 < 0.001
lvsv index, mL/m2 66 38.07 16.20 286 27.20 13.51 < 0.001
rv dia mass, g 66 22.62 6.80 283 44.48 25.47 < 0.001
lv dia mass, g 66 91.47 27.71 286 90.64 24.98 0.436
lv syst mass, g 66 111.74 32.17 286 99.83 26.39 < 0.001
rv mass index, g/m2 66 10.44 4.94 285 20.94 15.09 < 0.001
lv mass index, g/m2 59 40.90 17.87 243 39.84 18.99 0.442
sept angle syst, degrees 66 139.95 11.68 286 172.51 22.11 < 0.001
sept angle diast, degrees 66 134.21 8.28 286 145.01 11.93 < 0.001
4ch la area, mm2 66 1921.95 387.56 286 1785.95 556.53 < 0.001
4ch la length, mm2 66 55.76 7.86 286 55.62 8.60 0.412
2ch la area, mm2 66 1764.62 496.75 286 1901.67 545.35 0.855
2ch la length, mm2 66 48.66 9.08 286 52.12 9.33 0.166
la volume, mL 66 55.22 17.96 286 54.16 25.36 0.005
la volume index, mL/m2 66 24.95 10.14 286 23.24 10.45 0.042
ao qflowpos, L/min 65 6.09 1.50 285 5.29 1.50 < 0.001
ao qfp ind, L/min/m2 65 2.79 1.18 285 2.44 1.15 0.003
pa qflowpos, L/min 66 5.50 1.84 284 5.00 1.97 0.006
pa qflowneg, L/min 66 0.62 0.59 285 1.07 0.83 < 0.001
pa qfn ind, L/min/m2 66 9.70 7.19 284 17.49 9.85 < 0.001
systolic area pc, mm2 66 731.05 236.42 284 950.17 268.98 < 0.001
diastolic area pc, mm2 66 619.82 162.71 284 866.42 244.57 < 0.001
rac pc, % 66 17.02 13.70 284 10.01 8.14 < 0.001
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(e.g. Chronic Obstructive Pulmonary Disease), 15 cases were associated with
left heart disease. The cause of PH in the rest of patients was either multifac-
torial or unknown. All of the available data samples are part of the ASPIRE
Registry (Assessing the Severity of Pulmonary Hypertension In a Pulmonary
Hypertension REferral Centre) [8].

MRI images were captured with 1.5-tesla whole-body scanner (GE HDx, GE
Healthcare, Milwaukee) with an 8-channel cardiac coil. The images were acquired
in the supine position during a breath hold. The balanced steady state free
precession (bSSFP) sequences were spatially and temporally synchronized with
the 2D phase contrast (PC) images of the Main Pulmonary Artery (MPA) using
cardiac gating. Short-axis and four-chamber cardiac images were also collected.
The features from MRI were obtained as in [21]. A(t) area of the MPA was
extracted from the semi-automatically segmented bSSFP images. The blood flow
through MPA (Q(t)) was extracted from the segmented areas overlaid on PC
images. Using those measurements 0D- and 1D-model features were derived.

To prepare the feature dataset for the training of ML models we fill the miss-
ing values using linear interpolation. We encode categorical features to numerical
values and scale all the features to have means of 0 and variances of 1.

3.2 Features derived from models of blood circulation

The cardiovascular system (CVS) is a closed circuit with the main purpose of
transporting oxygenated blood to organs and tissues [17]. It comprises especially
from heart, blood and vessels. One of the main components of the CVS is the
pulmonary circulation. The target of the pulmonary circulation is to transport
the deoxygenated blood from the right ventricle through MPA and other ar-
teries to lungs and deliver the oxygenated blood to the left ventricle [9]. Since
CVS can be described by its haemodynamics and structure of heart and ves-
sels, the computational models based on the simplified representation of CVS
were introduced [18]. Those models range from 0D models simulating the global
haemodynamics (e.g. resistance and compliance of the system) to 3D models
representing the complex behaviour of vessels and the blood flow over time. In
[15], two models (0D and 1D) based on MRI measurements for the diagnosis of
PH were proposed.

0D model. 0D models are often based on the hydraulic-electrical analogue - the
blood flow and electrical circuits have many computational similarities [18]. For
example, the friction in the vessel can be identified as resistance R, the blood
pressure as voltage and the flow-rate as current. Thus, by applying electrical
laws (e.g. Kirchhoff’s law, Ohm’s law), the simplified representation of the CVS
can be achieved. 0D modelling of CVS started with the implementation of the
two-element Windkessel model [23]. Different variants of this model appeared in
the literature and it was applied to simulate pulmonary circulation [4, 20]. The
3-element (RcCRd) Windkessel model comprises of the capacitor C character-
izing the compliance of the pulmonary circulation and two resistors Rc and Rd

representing the resistance proximal and distal to the capacitor respectively.
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In [15], RcCRd model was applied to capture the characteristics of PH and
non-PH patients. In this model, the sum of two resistors can be interpreted as
the ratio between mean pressure and mean flow (pulmonary vascular resistance
- PVR) and C indicates the compliance of the pulmonary arteries. To optimize
the parameters of 0D model for the specific patient, two MRI imaging techniques
of MPA were used: PC and bSSFP. The bSSFP images were segmented to find
the area of MPA (A(t)) over time. Then, the segmented regions were overlayed
over PC images to capture the blood flow through MPA (Q(t)). Having the Q(t)
and pressure p(t) (derived from the measured MPA radius) the parameters of
the Windkessel model which were best describing the relationship between Q(t)
and p(t) over time could be derived.

1D model. The simplified representation of the pulmonary vasculature is mul-
tiple elastic tubes with numerous branches. 1D models often analyse the prop-
agation of the pressure and flow waves in such structures. The 1D equations of
the waves travelling through elastic tubes are derived from Navier-Stokes equa-
tions. In [15], the analysis of the power of the pressure waves was performed. The
pressure wave was broken down into forward and backward-travelling elements
(since vessels are rugged and twisted, some waves are bouncing off the vessel
walls and travel backward). It was assumed and confirmed that the power of
the backward wave in relation to the total wave power was greatly higher in PH
cases than in healthy ones. As diseased pulmonary vasculature contains more
deposits and stenoses the ratio of the backward wave power to the total wave
power (represented as Wb/Wtot) is higher than in the healthy one.

3.3 Machine Learning for PH detection

mPAP regression. The decision whether the patient is suffering from PH is
more important to the doctors than the actual value of mPAP. However, the
non-invasive prediction of the PH occurrence together with the predicted value
of mPAP is more informative to the clinicians. Therefore, we decide to conduct
two experiments: mPAP regression and PH classification.

To find the best ML algorithm for mPAP regression we train three models
based on GBDT: classic GBDT, DART and GOSS. We use mPAP feature as
the ground truth for our models. We find the best hyper parameters for the
models using Bayes optimization with 8-fold cross-validation (CV). We optimize
them for 200 iterations with minimizing Mean Squared Error (MSE) as the
optimization target. Then, using the best found parameters we train the models
with leave one out cross validation (LOOCV) and MSE as the objective function.
We measure MSE, Root MSE (RMSE) and Mean Absolute Error (MAE) as
regression metrics of the model.

We assume that mPAP ≥ 25 mmHg is a positive PH diagnosis. With this
assumption, we compute the binary classification metrics after thresholding the
predicted and measured mPAP with 25 value. We calculate accuracy, sensitivity,
specificity, True Positives (TP), False Positives (FP), True Negatives (TN), False
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Negatives (FN). To compare the impact of different feature sets on the results
(demographics, MRI, mathematical models), we repeat the procedure of hyper
parameter optimization, models training with LOOCV and metrics collection
for different combinations of features. We compare results of all the approaches.

Additionally, we train four other than boosted tree ML models on all features
and compare the metrics with GBDT-based methods using LOOCV-derived met-
rics. These additional methods are MLP, SVR, AdaBoost and RF.

PH classification. We conduct the binary PH classification, similarly to mPAP
regression. We binarize mPAP feature with 25 mmHg threshold and train three
GBDT-based models on different variations of feature sets, previously optimizing
the hyper parameters using Bayes optimization. The optimization is handled for
200 iterations with 8-fold stratified CV to ensure similar distribution of positive
and negative samples over each fold. The optimization goal is the maximum area
under the receiver operating characteristic (ROC) curve.

We train GBDT, DART and GOSS on best found parameters with LOOCV.
We calculate binary classification metrics: area under ROC curve (AUC), sensi-
tivity, specificity, accuracy, TP, FP, TN and FN. To compute the binary classifi-
cation metrics we use multiple thresholding strategies: youden - maximization of
specificity + sensitivity, f1 - maximization of f1 metric (harmonic mean of preci-
sion and recall), closest01 - the point which is closest to (0,1) point on the ROC
curve, concordance - maximization of the product of sensitivity and specificity.

4 Results

In this section, we present results of our experiments. We analyze, through the
ablation study, the impact of different feature sets on models performance and
compare metrics achieved by regression and classification models. In our case,
the ablation study means the removal of feature sets before the training to
understand their contribution to the overall performance of ML models. We also
show, that regression models can be utilized as a tool for PH classification.

4.1 mPAP regression

Table 2 presents results of regression experiments. The lowest regression met-
rics are achieved by DART MAE=5.94, RMSE=7.85 and MSE=61.66. GBDT
has marginally better classification metrics with sensitivity=0.96 (DART, 0.95),
specificity=0.74 (DART, 0.74) and accuracy=0.92 (DART, 0.91). The difference
between DART and GBDT results is not statistically significant (p-value=0.93).
Additionally, GBDT-based methods outperform other tested ML algorithms:
RF, AdaBoost, SVR and MLP with RF achieving the lowest MAE (6.55) out of
all compared methods (p-value=0.003).

Table 3 shows results of the ablation study. For all models, MAE drops
with different combinations of feature sets (demographics, mathematical models,
MRI) as opposed to only one feature set. The lowest MAE when a single feature
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Table 2. Results of mPAP value regression with LOOCV. Models trained on demo-
graphics, MRI-derived features and 0D and 1D models parameters. P-value is calculated
based on MAE against DART model.

Method MAE RMSE MSE R2 sensitivity specificity accuracy p-value

MLP 7.71 10.37 107.50 0.58 0.93 0.55 0.86 < 0.001

SVR 7.29 9.39 88.14 0.65 0.95 0.55 0.88 < 0.001

AdaBoost 6.92 8.92 79.59 0.69 0.97 0.41 0.87 < 0.001

RandomForest 6.55 8.64 74.59 0.71 0.95 0.56 0.88 0.003

GOSS 6.44 8.38 70.22 0.72 0.96 0.67 0.90 < 0.001

GBDT 5.95 7.91 62.55 0.75 0.96 0.74 0.92 0.93

DART 5.94 7.85 61.66 0.76 0.95 0.74 0.91

Table 3. Ablation study over the combinations of available feature sets (demographics,
MRI, 0D and 1D models). P-value is calculated against models trained on all features.

demographics ✓ ✓ ✓ ✓
0D and 1D models ✓ ✓ ✓ ✓
MRI ✓ ✓ ✓ ✓

regression (MAE)

GOSS 11.09 9.16 6.93 8.44 6.77 6.51 6.44
p-value < 0.001 < 0.001 0.007 < 0.001 0.012 0.645

GBDT 10.85 9.14 6.69 8.33 6.49 6.34 5.95
p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.012

DART 11.01 9.35 6.76 8.43 6.20 6.20 5.94
p-value < 0.001 < 0.001 < 0.001 < 0.001 0.058 0.083

classification (AUC)

GOSS 0.74 0.87 0.91 0.89 0.95 0.93 0.95
p-value < 0.001 < 0.001 < 0.001 < 0.001 0.117 < 0.001

GBDT 0.77 0.85 0.93 0.88 0.94 0.93 0.94
p-value < 0.001 < 0.001 0.593 < 0.001 0.147 0.017

DART 0.79 0.85 0.93 0.88 0.95 0.93 0.95
p-value < 0.001 < 0.001 0.005 < 0.001 0.028 < 0.001

set is used is achieved for MRI-derived measurements (GOSS, 6.93; GDBT 6.69;
DART, 6.76). However, the combination of all available feature sets yields the
best performance (GOSS, 6.44; GDBT 5.95; DART, 5.94). The physics-informed
feature engineering performed by the addition of 0D and 1D models parameters
improves metrics obtained in the regression.

The relations between predicted and measured mPAP values are shown in
Figure 1. The addition of mathematical models features decreases the number of
FP and FN (calculated with 25 mmHg threshold) even though the models were
trained on the MSE which is a regression objective function. Only 17 predictions
are FP and 11 are FN for GBDT (DART; 17 FP, 14 FN). For GOSS, GBDT
and DART, only one FP sample was predicted as having higher mPAP than 40
mmHg. The measured value for this patient during RHC was 24 mmHg which by
current indicators means PH positive patient. In case of mPAP above 45 mmHg,
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Table 4. Results of PH classification with LOOCV. Models trained on demographics,
MRI-derived features and 0D and 1D models parameters. Metrics sens (sensitivity),
spec (specificity), acc (accuracy) are given for multiple thresholding strategies: youden,
concordance, 01 (closest01), f1 (maximizing f1 metric).

youden concordance 01 f1

Method AUC sens spec acc sens spec acc sens spec acc sens spec acc

GOSS 0.95 0.88 0.94 0.88 0.88 0.94 0.88 0.88 0.92 0.89 0.97 0.68 0.91

GBDT 0.94 0.84 0.95 0.86 0.84 0.95 0.86 0.84 0.95 0.86 0.94 0.76 0.91

DART 0.95 0.85 0.95 0.87 0.85 0.95 0.87 0.87 0.92 0.88 0.95 0.8 0.92

all samples are predicted positively meaning high confidence of this model above
that value. All false negative samples have the predicted values above 20 mmHg.

4.2 PH classification

In the PH classification experiments, the impact of 0D and 1D models parame-
ters is also significant (Table 3). For the single feature set, the highest AUC is
achieved for models trained on MRI-derived parameters (GOSS, 0.91; DART,
0.93; GDBT, 0.93). The addition of features from mathematical models improves
the performance and acquires the same AUC as for the models trained on all
parameters (GOSS, 0.95; GDBT 0.94; DART, 0.95). Table 4 shows the detailed
results of PH classification models trained on all features. The highest AUC is
achieved for GOSS and DART models. Those models have the highest specificity
(GOSS, 0.94; GBDT, 0.95; DART, 0.95) when thresholding their predicted prob-
abilities with youden or concordance strategies. However, the classification of PH
patients is a task in which we would like to detect as many positive patients as
possible (maximizing sensitivity) while retaining reasonably high specificity (the
percentage of accurately stating that no PH is present). Such an approach is
most closely achieved with maximizing f1 metric as the thresholding strategy.
With this strategy, DART predictions yield best metrics with sensitivity of 0.95,
specificity of 0.8 and accuracy of 0.92. The results are comparable with the best
regression metrics (sensitivity=0.96, specificity=0.74 and accuracy=0.92). The
FN had mPAP close to 25 mmHg (with a maximum of 33 mmHg) and relatively
small PVR, meaning, that no severe PH case was misclassified. Half of the FP
had mPAP higher than 20 mmHg. The ROC curves for the three models are
presented in Figure 2.

5 Discussion

The noninvasive assessment of mPAP is a difficult task. In a clinical setting the
pressure is measured through the invasive RHC. The models presented in this
paper enable the prediction of mPAP in a noninvasive way using information
about patients, measurements derived from multiple MRI images and mathe-
matical models. The combination of all features acquired from different domains
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Fig. 1. Measured vs predicted values of mPAP with ≥ 25 mmHg thresholding for
models trained on all parameters: GOSS (top, R2=0.72, p-value < 0.001), GBDT
(middle, R2=0.75, p-value < 0.001), DART (bottom, R2=0.76, p-value < 0.001).
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Fig. 2. ROC curves for GBDT-based classification models trained on all features: GOSS
(left), GBDT (middle), DART (right).

brings the best results. The physics-informed feature engineering improves the
assessment of mPAP. The modelling of MPA haemodynamics enables the quan-
tification of physiological markers that enhance the quality of predictions. While
MRI is not a widely used test in PH diagnosis, we showed that it can be utilized
for an accurate, noninvasive mPAP estimation.

What is more, as our knowledge about the disease progresses, the thresholds
and definitions of PH may change. Our regression models are not restricted
to the 25 mmHg threshold set before the training. Depending on the current
and future state of PH classification, the predicted mPAP can be interpreted in
different ways. Classification models return the probability of patient having PH
- the probability depends on the assumed threshold for PH. In this setting, the
regression models are more flexible and can be used as additional information
regarding the patient’s state to help in determining the final diagnosis, even, if
the definition of PH changes. In case the regression model is used for classification
only, the predicted mPAP poses as an explanation of the diagnoses. As shown
in Figure 1, the confidence in a positive PH diagnosis can be stronger as the
predicted mPAP gets higher. Above the predicted value of 45 mmHg all patients
were diagnosed with PH. All the positive samples that were misclassified as
negative have the predicted mPAP over 20 mmHg which can be considered
elevated. In other words we have not observed any critical failures of our models.

Nevertheless, clinicians are mostly interested in the final diagnosis of the
ML models. We show that classification models achieve similar metrics as the
regression models: sensitivity=0.95, specificity=0.8 and accuracy=0.92 achieved
by DART for classification, in comparison to sensitivity=0.96, specificity=0.74
and accuracy=0.92 achieved by GBDT for regression. It is important to notice
that the impact of the models performance by the features from mathematical
models is more clearly represented in the classification task, because the de-
scribed mathematical models were created for discrimination between PH and
non-PH patients [15]. Parameters derived from those models pose as an accurate
PH/non-PH differentiation mechanism and prediction of mPAP from those pa-
rameters may be a harder task. However, the addition of features derived from
0D and 1D models improves the regression metrics as well.
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6 Conclusion

In this paper, we investigated the impact of physics-informed feature engineer-
ing on the performance of GBDT-based models for mPAP regression and PH
classification. We showed that parameters from 0D and 1D mathematical models
improve the metrics of tested models. Comparison of the results revealed that
the PH diagnosis may be performed by regression models achieving similar met-
rics as the classification models. The provided, predicted mPAP value increases
the confidence in the final diagnosis. Future works may include improvements in
the feature engineering, utilizing deep learning to predict mPAP directly from
MRI images or testing our methods on external datasets.
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8 Appendix

Acronyms used in Table 1 and their explanations: mPAP: mean pulmonary ar-
terial pressure measured during RHC procedure, who: WHO functional PAH
score [3], bsa: body surface area, Rd: distal resistance calculated from 0D model,
Rc: proximal resistance, C : total pulmonary compliance, Rtot: total resistance,
Wb/Wtot: backward pressure wave to the total wave power, rac fiesta: pulmonary
arterial relative area change from bSSFP MRI, systolic area fiesta: syst area of
MPA from bSSFP, diast area fiesta: diastolic area of MPA from bSSFP, rvedv:
right ventricle end diastolic volume, rvedv index: rv end diastolic volume index,
rvesv: rv end systolic volume, rvesv index: rv end systolic volume index, rvef:
right ventricle ejection fraction, rvsv: rv stroke volume, rvsv index: rvsv index,
lvedv: left ventricle end diastolic volume, lvedv index: lvedv index, lvesv: lv end
systolic volume, lvesv index: lvesv index, lvef: lv ejection fraction, lvsv: lv stroke
volume, lvsv index: lvsv index, rv dia mass: rv diastolic mass, lv dia mass: lv
diastolic mass, lv syst mass: lv systolic mass, rv mass index: rv diastolic mass
index, lv mass index: lv diastolic mass index, sept angle syst: systolic septal an-
gle, sept angle diast: diastolic septal angle, 4ch la area: left atrium area 4 cham-
ber, 4ch la length: la length 4 chamber, 2ch la area: left atrium area 2 chamber,
2ch la length: la length 2 chamber, la volume: la volume, la volume index: la
volume index, ao qflowpos: aortic positive flow, ao qfp ind: aortic positive flow
index, pa qflowpos: PA positive flow, pa qflowneg: PA negative flow, pa qfn ind:
PA negative flow index, systolic area pc: systolic MPA area from PC, dias-
tolic area pc: diastolic MPA area from PC, rac pc: relative area change of MPA
from PC.
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