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Abstract. We develop an empirically grounded agent-based model to
explore the purchasing decisions of mutually interacting agents (con-
sumers) between three types of alternative fuel vehicles. We calibrate the
model with recently published empirical data on consumer preferences
towards such vehicles. Furthermore, running the Monte Carlo simula-
tions, we show possible scenarios for the development of the alternative
fuel vehicle market depending on the marketing strategies employed.
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1 Introduction

According to experts, the achievement of the goals of sustainable transport re-
quires an increase in the share of vehicles powered by alternative fuels (AFV)
in road traffic [7,2]. Among these cars, battery electric vehicles (BEVs), plug-in
electric vehicles (PHEVs), and hybrid electric vehicles (HEVs) are mainly in-
cluded. Although the market share of AFV is constantly increasing worldwide,
its smooth diffusion encounters a number of barriers including lack of sufficient
charging infrastructure, high prices, and safety issues [13].

There are a number of studies on the technical, economic, social, and psycho-
logical factors that influence the choice of vehicle type when deciding to purchase
it. The authors use various stated preferences methods to analyze what factors
determine the decision to buy a certain type of a vehicle [6,1]. Apart from that,
a large number of simulating and modeling studies, making usage of agent-based
modeling (ABM), have been recently published [11,4,3]. ABM allows us, among
others, to investigate how the individual decisions of the agents (i.e., households,
consumers, etc.) and their social interactions lead to effects on the macroscopic
level (e.g., market penetration of a given good). Based on [10,11,8,9], we propose
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an empirically grounded agent-based model with explicitly introduced interac-
tions with local and global neighborhoods. Our proposed approach allows the
model to be easily developed in the future, for example, taking into account space
heterogeneity, individual consumer preferences, or interactions in online social
networks. However, here, we focus on the zero-level approach, in which the en-
vironment is represented by a regular grid, and the agents are homogeneous in
terms of preferences. This allows us to determine what is the importance of ex-
ternal factors such as global marketing or different government policies. What is
even more important, it allows other researchers to replicate the results, which
in our opinion is necessary for reliable model verification.

2 The model

We consider a square L × L lattice with periodic boundary conditions. The
linear size of the system L = 100 is taken in most of our simulations. Each
node is occupied by exactly one agent, and thus the total number of agents in
the system equals N = L2. Each agent has exactly four neighbors due to the
network structure, and it can own exactly one car.

Initially, the agents do not have cars. We use a random sequential updating
scheme, which mimics continuous time. This means that in an elementary up-
date, only one agent is selected randomly from all N agents, and a single Monte
Carlo step consists of N elementary updates (note that not necessarily all agents
are updated in a single time step). The selected agent buys one car picked from
the alternative fuel vehicle choice set. Motivated by the empirical studies [5], in
our simulations this set includes in total 75 cars, 25 of each type (HEV, PHEV,
and BEV). All cars are characterized by 5 attributes that are 5-level discrete
variables. Car profiles are taken from the conjoint analysis: Tables 13, 16, and
17 in [5]. The vehicle attributes impact the overall utility that comes from pur-
chasing a given car. The total utility of car j ∈ {1, 2, ..., 75} is the sum of partial
utilities associated with the attributes of this car:

Uj =
5∑

n=1
PUj,n, (1)

where PUj,n is the partial utility of the n-th attribute of car j. These utilities
were estimated also through the conjoint analysis of consumers’ preferences:
Table 14 in [5]. To distinguish between different types of cars, we introduce a
function:

f(j) =


HEV if the j-th car is HEV,
PHEV if the j-th car is PHEV,
BEV if the j-th car is BEV.

(2)

Following [11,9], we assume that the consumer decision-making process de-
pends not only on the total utility of a vehicle, but also on additional exter-
nal factors that account for marketing, social influence, and the availability of

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_74

https://dx.doi.org/10.1007/978-3-031-08754-7_74


Purchasing decisions on AFVs: ABM 3

recharging facilities. Thus, the probability that agent i ∈ {1, 2, ..., N} buys car
j is expressed by the following multinomial logit model:

Pi,j =
Wi,f(j) ·RFEf(j) · exp (Uj)∑75
j=1 Wi,f(j) ·RFEf(j) · exp (Uj)

, (3)

where Wi,f(j) is the willingness of agent i to buy a car of a given type, which
captures the impact of marketing and social influence, whereas RFEf(j) is the
refueling effect, which reflects the availability of recharging facilities for a given
car type. The refueling effect accounts for agents’ concerns related with low
ranges of some AFVs, such as PHEVs and BEVs. We include this effect in a
functional form that has already appeared in previous studies [10,11,9]:

RFEf(j) =


1 if the j-th car is HEV,
1−DPe−αPHEVNPHEV/N if the j-th car is PHEV,
1−DPe−αBEVNBEV/N if the j-th car is BEV,

(4)

whereDP is a driving pattern characterized by the society,NPHEV andNBEV are
the numbers of agents that have already adopted PHEVs and BEVs, respectively,
whereas αPHEV and αBEV are scaling parameters used to calibrate the model.

The novelty of our model is the formula describing the willingness of agent i
to buy a car of type f(j):

Wi,f(j) = hf(j)︸ ︷︷ ︸
marketing

+ plki,f(j)/k︸ ︷︷ ︸
local influence

+ pgNf(j)/N︸ ︷︷ ︸
global influence

+ 1︸︷︷︸
independence

, (5)

where hf(j) reflects the effectiveness of marketing for vehicles of a given type, pl is
the strength of local social influence, pg is the strength of global social influence,
ki,f(j) is the number of neighbors of agent i that already possess vehicles of a
given type, k = 4 is the total number of neighbors of an agent, and Nf(j) is the
total number of agents in the system that have vehicles of a given type. The
first term of formula (5) captures not only the influence of advertisements and
promotions, but also the effectiveness of various policies, benefits, and advantages
related to AFVs, such as subsidies, tax releases, or free parking spaces. We
assume that all vehicles with the same engine type are described by the same
value of parameter hf(j), and thus it takes only three values: hHEV, hPHEV, and
hBEV.

Regarding social influence, we distinguish between local and global one, just
like in [8]. The local influence (word-of-mouth), the second term of Eq. (5), is
proportional to the fraction of neighbors with cars of the same type as the consid-
ered car. Similarly, the global influence, the third term of Eq. (5), is proportional
to the fraction of all agents in the system having such cars.

A pseudo-code to simulate our model is as follows:

0. Set parameters of the model: L, DP , αPHEV, αBEV, hHEV, hPHEV, hBEV, pl,
and pg as well as the time horizon of the simulation, T . Initialize the system.
Set time t = 0.
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1. Count the number of agents in the system that have cars of each type, i.e.,
NHEV, NPHEV, and NBEV.

2. Calculate the refueling effect from Eq. (4) for PHEVs and BEVs, i.e.,RFEPHEV,
and RFEBEV.

3. Draw number i from discrete uniform distribution U{1, N}. Agent i is se-
lected to buy a car.

4. Count the number of neighbors of agent i that have cars of each type, i.e.,
ki,HEV, ki,PHEV, and ki,BEV.

5. Calculate the willingness of agent i to buy a car of each type from Eq. (5),
i.e., Wi,HEV, Wi,PHEV, and Wi,BEV.

6. For each j ∈ {1, 2, ..., 75}, calculate the probability that agent i buys car j,
i.e., Pi,j from Eq. (3).

7. Draw number u from continuous uniform distribution U [0, 1].
8. Find index m such that

∑m−1
j=1 Pi,j ≤ u <

∑m
j=1 Pi,j . Agent i buys car m.

9. Update time t→ t+ 1/N . If t < T , go to point 1.

3 Results

To calibrate the model, we first run simulations without any marketing and
social influence (hHEV = 0, hPHEV = 0, hBEV = 0, pl = 0, and pg = 0), and
tune the values of αPHEV and αBEV so that the stationary adoption levels of
HEVs, PHEVs, and BEVs correspond to those estimated based on the survey
conducted in [5]. We focus on the stationary state of the system, since it is
difficult to establish a general relationship between the Monte Carlo steps and
the real time. In the survey, 48.8% of the respondents declared that they would
buy HEV, 32% PHEV and 19.3% BEV. We obtain similar levels of adoption for
αPHEV = 2.6 and αBEV = 0.05, see Fig. 1(a). Without having data for Poland, we
set DP = 0.49, which approximates the aggregate driving pattern for Germany
[10]. All the results that we present are averaged over 40 independent simulations.
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Fig. 1. Adoption levels of AFVs in a system without marketing (hHEV = hPHEV =
hBEV = 0) and social influence (pl = pg = 0) as a function of time measured in Monte
Carlo steps: (a) DP = 0.49 (driving pattern for Germany [10]) and (b) DP = 0.78
(driving pattern for Iceland [11]). NONE represents the fraction of agents without a
car.
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After calibrating the model, we want to check how the driving pattern DP
and different policies impact the behavior of the model. To verify the former,
we simulate the system with the same values of parameters that were obtained
within the calibration for DP = 0.49, but this time with DP = 0.78. This
value characterizes countries with longer average daily driven distances, such as
Iceland [11]. In Fig. 1(b) it is seen that increasing DP leads to a higher adoption
level of HEVs at the expense of BEVs.

Next, we investigate how marketing campaigns targeting only one type of
AFVs impact their stationary adoption levels. Figures 2-4 present the results for
the systems where only HEVs, PHEVs, and BEVs are advertised, respectively.
Under stronger social influence, marketing targeted at HEVs leads to their higher
adoption level. The opposite happens in the case of PHEVs and BEVs. However,
for HEVs, stronger social influence causes smaller gains in the adoption level
that result from the increase of the advertising strength, see Fig 2. This dimin-
ishing effectiveness of marketing is related to the high initial adoption of HEVs.
In contrast, we can achieve a considerable increase of PHEV adoption for a
low intensity of advertisements when the social influence is strong enough, see
Fig. 3(c).
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Fig. 2. Impact of campaigns promoting only HEVs (hPHEV = hBEV = 0) on the
systems with different strengths of social influence: (a) pl = pg = 0, (b) pl = pg = 2,
and (c) pl = pg = 4.
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Fig. 3. Impact of campaigns promoting only PHEVs (hHEV = hBEV = 0) on the
systems with different strengths of social influence: (a) pl = pg = 0, (b) pl = pg = 2,
and (c) pl = pg = 4.
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Fig. 4. Impact of campaigns promoting only BEVs (hHEV = hPHEV = 0) on the
systems with different strengths of social influence: (a) pl = pg = 0, (b) pl = pg = 2,
and (c) pl = pg = 4.

4 Discussion

Within our simple ABM, we were able to obtain results similar to those in [5]
in terms of consumer choices between three types of alternative fuel vehicles:
HEV, PHEV, and BEV. The calibration of the model allowed us not only to
reflect the current sentiments on the market but also to show that the local and
global impact is not always conducive to the spread of new solutions. That is
why advertising is needed, whose strength must depend on the strength of so-
cial interaction to be effective. The results have revealed that the largest market
share is gained by the vehicle type that is sufficiently advertised. This observa-
tion shows how important marketing strategies and government policies are in
promoting a given type of vehicle.

We have also observed that social influence can either strengthen the effect of
advertising (for HEVs) or reduce it (for PHEVs and BEVs). This may be related
to the greater popularity of HEVs among drivers and thus the frequency of
information and opinions provided on this subject. However, PHEVs and BEVs
are still less popular, mainly due to their high price and limited network of
charging stations, and thus the local and global influence may have a negative
effect on diffusion.

Our model also allows us to observe the impact of the value of the driving
pattern, DP , on the level of adoption and diffusion of vehicles. Comparison of
results for medium and high values of DP indicates that BEV adoption is higher
in countries more densely populated where the average distances covered are
shorter and the charging station network is denser. Being aware of the weaknesses
of our model (including homogeneous agents, simple network topology, lack of
negative marketing, etc.), we believe that the model can be easily developed
further to capture more realistic assumptions [12]. The available survey data
[5] also restricted our model setup. First, we could not take into account other
common means of transport, such as internal combustion engine vehicles, fuel cell
electric vehicles, or public transportation. Second, not knowing how respondents
had been impacted by marketing and social influence, we performed a model
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calibration without these factors. Taking these aspects into account would result
in a more realistic setup; however, this requires more tailored empirical data,
which we are missing.
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