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Abstract. Ethereum is a decentralized public blockchain powered by its native
cryptocurrency, the Ether (Ξ), which is second to Bitcoin (BTC) in market cap-
italization. To ensure the integrity of the network, Ethereum requires a fee for
every transaction. This fee is called gas (by analogy to the fuel used by cars) and
can fluctuate based on supply and demand. This volatility stepped up a number
of initiatives to predict future gas prices. The paper proposes a novel solution
beyond current state-of-art using DeepAR. This is a model built on Recurrent
Neural Networks with the ability leverage hundreds of related time series to pro-
duce more accurate predictions. Our implementation uses features extracted from
the Ethereum MainNet as well as off-chain data to achieve accurate predictions.

Keywords: Ethereum · blockchain · gas price · proof of work · machine learning
· prediction · probabilistic forecasting · DeepAR.

1 Introduction

Ethereum is one of the most popular blockchains and its cryptocurrency is ever increas-
ing in value. Just as other blockchains, such as Bitcoin, it uses a consensus algorithm
called Proof of Work (PoW), a.k.a. mining, to maintain the integrity of the blockchain
and to prevent double spend. The blockchain provides financial incentives to miners
to perform PoW in the form of newly-minted coins and transaction fees paid by users
wanting to perform transactions. In Ethereum these fees are called ”gas”.

The term comes from the analogy that a car needs fuel to run and gas is the fuel that
helps recording of transactions on the distributed ledger. Gas is the unit of measurement
of computational power required for a miner to process a transaction and is measured in
WEI = 10−18ET H. The price of the execution of a transaction, a contract, or a deploy-
ment for a smart contract is GasCost ·GasPrice [10]. Just as fuel prices in real world,
gas price may vary being subject of a negotiation process. The sender of a transaction
specifies the maximum amount they are willing to pay, just as the miner has the options
of accepting, partially refunding, or rejecting the offer.

Ethereum is also a hotbed for innovative Decentralized Applications fueled by Smart
Contracts [21], the foundation for tokens representing digital assets or even real-world
objects [14], [18]. Token transfers, as much as cryptocurrency transactions have an im-
pact on gas prices, and hence provide valuable information for our prediction model.
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2 Background & Related Works

2.1 Background

The Ethereum Blockchain A block in the blockchain contains a header and several
Merkle Patricia Trie structures [19], including one that has the transactions in it. Our
model uses a limited number of fields as presented in Table 1.

Table 1. Block header fields

Item Description Source
Timestamp When block was assembled. Block Header
Gas used Total gas used for block. Block Header

Block number Index of block. Block Header
Hash Transaction hash Transaction
Gas Gas paid by sender Transaction

Gas price Price in Wei Transaction

The Estimation Model For this experiment we decided to use DeepAR [13]. Amazon
SageMaker DeepAR is a tool that implements an unsupervised forecasting model based
on autoregressive recurrent neural networks (RNN).

Unlike other forecasting methods, such as autoregressive integrated moving average
(ARIMA) and exponential smoothing (ETS), DeepAR can learn a global model from
multiple time series. The empirical experimental results produced by the Amazon team
[13] show an improvement on standard metrics of up to 15% compared to state-of-the-
art methods, such as Facebook’s Prophet [16].

2.2 Related Works

Three methods to analyze and predict gas prices are highlighted in [9]. The first method
assumes the analysis of pending transactions in large Mempools [6]. Mempool is a
buffer area where pending transactions sent by Ethereum clients are stored before they
are added to the Ethereum blockchain. This method proves to be resource-intensive and
complex to implement as it requires access to multiple Mempools and also it assumes
that the owners of these Mempools are honest.

A second method analyzes recently committed blocks using oracles. These are sys-
tems that connect the blockchain to the outside world. Specifically, gas price oracles
provide guidance to users regarding the gas price to pay to ensure that miner will accept
the fees and commit the submitted transactions into subsequent blocks [15]. Examples
include Ethereum client, Geth [8], EthGasStation [3], Gas Station Express [4].

A forecasting model based on Gated Recurrent Unit (GRU) [7] and a Gas Recom-
mendation engine that leverages the output of the forecasting model was proposed in
[20]. The approach used a Neural Net model that also included an additional parameter
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that reflects the urgency of the transaction (the higher the gas price, the faster the trans-
action is committed). The model reduced fees by more than 50% while increasing the
waiting time by 1.3 blocks, when compared to the GETH oracle.

Rawya Mars et al [12] evaluated the LSTM, GRU and Prophet models [16] to antic-
ipate gas prices. An empirical evaluation resulted in better outcomes from LSTM and
GRU models than Prophet model and the GETH oracle.

A Gaussian process model to infer the minimum gas price is presented in ChihYun
et al [10]. Gaussian process is a non-parametric Bayesian approach to estimate a poste-
rior over functions based on prior over functions using test data. This model performs
better than GasStation-Express and Geth only when gas prices fluctuate widely. For this
reason, they propose a hybrid solution combining GasStation-Express with their model.

3 Experiments and Results

3.1 Data Collection and Pre-processing

According to Salinas et al [13], the covariates can be item and/or time dependent. For
collecting the historical blockchain data, we used the Kaggle Ethereum Blockchain
Complete live historical data (BigQuery) [2], as well as live minute-by-minute Ether
(ETH or Ξ) and Polygon MATIC prices from cryptodatadownload.com [1], as seen in
Table 2. Our Jupyter notebook [11] prepared the data for the training.

Table 2. Features used for training and inference (minute-by-minute intervals). The target time
series are the Gas Prices and there are 6 additional dynamic features. During our experiments we
found MATIC prices not to be helpful

Feature Description Source
Gas prices Gas prices by transaction BigQuery transactions [2]
Ξ Prices Ether to USD price minute-by-minute Binance exchange data [1]

MATIC Prices MATIC to USD price minute-by-minute Binance exchange data [1]
Transaction values Value transfer by transaction BigQuery transactions [2]

Committed transactions Transactions in blocks BigQuery blocks [2]
Token transfers # ERC20 token transfers BigQuery token transfers [2]
Contract events # ERC20 token events BigQuery logs [2]

Gas used # units of gas per transaction BigQuery traces [2]

For the training and validation phase, we processed the mean of all the time series
for every 20 minutes. After experimenting with various time series frequencies, we
chose 20 minute intervals as the best for this type of data. Ethereum gas prices fluctuate
widely and hence the data is very noisy. In spite of not smoothing the data by eliminating
outliers, our model performed very well. In the end, we had data processed at 20 minute
intervals for 291 days (January 1, 2021 to October 18, 2021). We used 80% of the data
for training and 20% for validation.
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3.2 Experimental Setup

We built a Python Jupyter notebook [11] and used Gluon Time Series (GluonTS) [5]
for probabilistic time series modeling. The DeepAREstimator is an implementation of
the model described by Salinas et al [13]. We have configured the estimator as follows:

– Prediction length of 40, thus providing 40 · 20 = 800 minutes = 13 hours and 20
minutes.

– Architecture of 4 layers with 40 cells per each layer.
– Dropout rate = 0.1.
– Context length (number of steps) of 80 (double of prediction length). Context length

is the number of points provided to the model to make the prediction.
– Cell type GRU. Note that we experimented with LSTM cells as well, although we

did not notice any significant improvement, but rather a slight slow-down of the
training.

– The learning rate callback had the following settings: patience=10, base LR=10−3,
decay factor=0.5.

– Training was configured to run for 200 epochs.
– We selected the checkpoints from 2 models, based on the best metric values.

The experiments were performed on a desktop computer equipped with Intel Cor-
poration Xeon E3-1200 v6/7th GenCore Processor with 32 GB RAM and 240GB SSD,
NVIDIA GeForce GTX 1080 TI GPU, running Ubuntu 18.04.

3.3 Experimental Results

The tests were run for various date/time targets, and we noticed empirically an overall
improvement in metrics of predictions as we added more features.

To find the best combination of features, we performed a greedy approach. First,
we selected the feature with the highest impact by running the algorithm 7 times. Since
using the MATIC prices gave worse results than using 0 dynamic features, we dropped
this data from subsequent tests. Once we found the feature with best results, we ran
the training and inference with the remaining 5 feature data and selected again the one
giving best results. We continued the process for the rest of the features, thus performing
a total of 7 + 5 + 4 + 3 + 2 + 1 = 22 trials.

Given yi as the observed value, ŷi the predicted value and n the number of samples,
we computed the following metrics using sklearn package:

1. Mean Absolute Error (MAE): MAE =
∑n

i=1 |yi−ŷi |

n
2. Quantile Loss (QL) for a given quantile q, defined as: L(ŷi, yi) = max{q(ŷi−yi), (q−

1)(ŷi − yi)}. This value is averaged across all predictions. We compared the values
obtained for the following quantiles: q ∈ {0.1, 0.5, 0.9}.

3. Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) defined as:

MS E =
∑n

i=1(yi−ŷi)2

n and RMS E =
√∑n

i=1(yi−ŷi)2

n =
√

MS E. To calculate the RMSE
metric, we used data normalization by re-scaling the test and predicted data to have
a mean of 0 and variance of 1.

Our best performance result with 5 dynamic features is presented in Figure 1. Ta-
ble 3 shows the values obtained for each metrics, depending on number of features.
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Fig. 1. Prediction with 5 dynamic feature inputs: Ξ prices, Transaction Values, Committed Trans-
actions, Token Transfers, and Gas Used

3.4 Discussion

Time series forecasting is one of the most important tools used by businesses, and there
are a number of frameworks data scientists can use for this purpose. As expected, there
is no “silver bullet” for any problem. The empirical research conducted by Z̆unić et al
[17] concludes that DeepAR (AWS) models “show superiority over classical methods
only when they have a large number of signals over which to create a model, and in
the case of articles with a short history.“ Since cryptocurrency prices in general and Ξ
in particular have numerous covariates that can be used, one can perform accurate pre-
dictions with shorter history, a benefit that low-power (e.g. IOT) edge devices can take
advantage of when deciding on the timing for submitting transactions to the blockchain.

Table 3. Comparison of metrics by number of dynamic features involved. Values have been con-
verted to Ξ (1018WEI).

Metric 0 feats. 3 feats. 5 feats.
MAE 19 15 12
MSE 623 395 286

Quantile Loss [0.1] 292 195 173
Coverage Quantile [0.1] 0 0.225 0.250

Quantile Loss [0.5] 769 636 496
Coverage Quantile [0.5] 0.1 0.82 0.775

Quantile Loss [0.9] 477 373 284
Coverage Quantile [0.9] 0.625 0.975 0.975

RMSE 25 20 17
Normalized RMSE 0.287 0.229 0.194
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Our analyzed data ranges between January 1, 2021 and October 18, 2021. During
this time, gas prices ranged between 10 and 4315 GWEI, or a 431.5% fluctuation. As
of this writing, a regular Ξ transfer has a limit of 21,000 units of gas. At the given
price range, one would have to pay anywhere between 0.00021 and 0.9 Ξ. At current
exchange rate of 1 Ξ to 4,189 USD this comes to roughly between 1 and 3,770 USD for
a simply sending Ξ to a different address. This clearly shows the importance of timing
these transactions based on accurate predictions.

Although our experiment has room for improvements, it shows the power of proba-
bilistic forecasting using DeepAR. Using this approach we were able to obtain accurate
predictions in spite of a noisy dataset. DeepAR requires minimal feature engineering.
We performed down sampling but did not remove outliers. We did, nevertheless, have
to perform normalization, in spite of suggestions in the literature otherwise. Our model
did not converge without normalizing the features first. By adding dynamic features,
we achieved improvements in the prediction metrics (see Table 3). As the figures show,
DeepAR’s Monte Carlo sampling-based quantile estimates are accurate and can be very
useful in practice.

4 Conclusions and Future Works

Empirical analysis of Ethereum gas price prediction with DeepAR proves that carefully
chosen covariates can improve model performance. Gas prices are impacted by various
factors, including seasonality, volume of transactions, transaction values, number of to-
ken transactions, Ξ price, amount of gas used per block. Our focus in the future will
be to identify additional features that can improve the performance of our model, by
researching factors that have an impact on the supply and demand for gas. Such exam-
ples may include off-chain data, such as twitter or other social media events that may
influence the volume of transactions on the Ethereum blockchain and, hence indirectly,
gas and/or Ξ prices.

As DeepAR performs better than Facebook’s Prophet with a smaller amount of
sales data [17], we will research potentials for deployment of our models on low-power
connected devices.
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