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Abstract. As social networks continue to grow in popularity, it is essen-
tial to understand what can be learned about private attributes of social-
network users by mining social-network data. Previous work focused on
the inference of time-invariant attributes such as personality traits. By
contrast, in this paper we focus on the inference of dynamic, time-varying
attributes. We present a new approach to modeling social-network users
and mining time-varying attributes using dynamic bayesian networks
(DBNs). We then explore the extent to which such temporal models can
improve the inference results of various dynamic attributes. This work is
the first to take a DBN-based approach to the task of private-attribute
inference in social networks.

1 Introduction

Knowledge of social-network users’ intentions has immense potential to improve
the design of recommendation systems, ad-targeting mechanisms, public-health
campaigns, and other social and commercial endeavors. At the same time, such
knowledge can have a detrimental effect on users’ privacy. In this paper, we
are interested in inferring intentions of social-network users using public data
extracted from their social-network profiles.

Problem description Let u be a social-network user and S, be the set
of social networks on which u has accounts. We use §(, ) to denote user u’s
account on network s. Each account has a private portion 5?575) and a public
portion 5?5,5)' The private portion contains data that only u’s ties and the social-
network provider can see, while the public portion contains data that can be
seen by everyone. In addition to data that u publishes, gfis) contains metadata
information about £, ) such as the mere existence of §(, ) and the visibility
levels of different attributes in &, ). The goal of this work is to infer offfine
behavioral intentions of a social-network user w using only the public portions,
{fﬁzs)}sesu, of u’s online social-network accounts. We focus on present or near-
future behavioral intentions, i.e., on decisions to perform certain actions within
short periods of time after the decisions are made.

The paper makes the following contributions:

A new approach to modeling social-network users using Dynamic
Bayesian Networks We present a new approach to modeling social-network
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users and mining time-varying attributes using DBNs. We evaluate our models
when used for the inference of different dynamic attributes given temporal, real-
world social-network data. This work is the first to take a DBN-based approach
to the task of attribute inference in social networks and the first to offer a DBN-
based representation of social-network users.

A unique focus on offline, time-varying behavioral intentions Un-
like other existing works that tackle the task of attribute inference, ours is the
first work that aims at inferring offline and dynamic, non-politically-related be-
havioral intentions of social-network users (i.e., a user-centric approach) solely
based on public social-network data. Other works either focus on online inten-
tions or time-invariant preferences; use private data or data that is not obtained
from social networks; or take an ”object-centric” approach by trying to infer
the intention associated with a single, standalone and contextless social-network
“object” such as a post or a tweet. Furthermore, some of the behavioral inten-
tions that we consider in this paper have never been studied in any prior machine
learning (ML) or social-network-related work.

A new multidisciplinary methodology for the inference of behav-
ioral attributes We introduce a novel, multidisciplinary methodology for the
inference of behavioral attributes such as decisions and intentions. We design
modular bayesian-network (BN) models that are able to capture the evolving
nature of the human decision-making process by combining data and priors
from multiple domains. Our methodology handles common challenges in social-
network mining such as incomplete datasets, unlabeled data and bidirectional
influence between features and the target variable.

2 Related work

Inference of personal attributes using social-network data has been extensively
researched. Inferring users’ personality type was investigated in [8] using regres-
sion models and Twitter /Facebook data, respectively. Youyou et al. [29] showed
that automatic inference methods that rely on Facebook likes achieve better
prediction accuracy than those achieved by asking the users’ friends. Staiano et
al. [27] used data gathered through smartphones such as calls and texts; their
results significantly vary across different personality dimensions.

Demographic attributes’ inference is another well-studied topic, with age
and gender being the most researched attributes [14,15]. A related stream of
research focuses on psychological and mental conditions. Depression is the most
researched condition, followed by anxiety and stress [9,18].

The common denominator of all the above works is that they focus on at-
tributes that are either static (their values rarely change), non-self controlled,
or both.

Inference of self-controlled attributes has also been extensively studied. How-
ever, such works focus on the inference of opinions and attitudes rather than
behavioral attributes [4,25]. While a substantial amount of work does study dif-
ferent types of behavioral attributes, their goals are different than ours. Such
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works study general correlations between network or linguistic features and a
given behavior, identify the prevalence of a certain behavior among the general
population, or classify social-network textual objects such as tweets or posts.
For example, while there exists a considerable amount of work about the use of
social networks for monitoring public health, none of those works aims at infer-
ring vaccination intent of a given social-network user at a given point in time.
Rather, existing works analyze collective sentiment towards vaccinations [19],
track the spread of infectious diseases and monitor online discussions concerning
widespread diseases [23], or perform classification of stand-alone social-network
objects according to vaccination attitudes of the object’s creator [1].

Inference of time-varying, behavioral attributes using public social-network
data has therefore been hardly researched, with two exceptions: voting intentions
and online purchase intentions. There are several key differences between this
work and prior ML work on PI. First, the majority of existing works examine
general buying preferences rather than time-varying PIs [30]. Other works try to
infer PT of stand-alone social-network objects (content-centric) rather than PI of
social-network users (user-centric), an approach which is inherently biased [2,10].
The remaining works that do try to infer a user-centric, time-varying PI use
data derived solely from E-commerce platforms. Such data is both platform-
specific and oftentimes considered private, unlike our use of public social-network
data [21]. The closest work to ours is [17] which infers PI of Pinterest users using
temporal features and a logistic regression model. However, they only consider
online purchases and do not differentiate between different product categories.

3 Methodology

“Intentions are people’s decisions to perform particular actions” [24]. In this pa-
per, we aim at understanding to what extent we can infer behavioral intentions
of social-network users. In order to do that, we build a BN model that leans
on intentions’ most influential factors as shown in behavioral psychology liter-
ature [7,11,24]. We split those factors into two groups: static factors, such as
personality, demographic attributes and self-efficacy, and dynamic factors such as
emotions, interest and opinion. A significant challenge, however, is the fact that
the values of some of those determinants (e.g. personality) can not be directly
obtained from the user’s social-network profiles (“latent variables”). Therefore,
we enrich the model with various observed network features which may assist in
both inferring the target intention and inferring its latent determinants.
Though different intentions are influenced by the same high-level factors,
their associated BNs still differ in their qualitative, quantitative and temporal
specifications. To reflect those differences, we build on our general intention-
inference BN and create, for each behavioral intention, an intention-specific DBN.
This is achieved using a multistage process: first, we identify the best set of de-
terminants of general behavioral intentions using existing behavioral-psychology
literature. Second, for each intention, we identify its unique determinants using
existing literature which investigates that specific intention. Third, we identify
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Fig. 1: An illustration of our behavioral-intention-inference methodology

the set of network features that are known to have a strong relation to the set of
general and intention-specific determinants described above; the priors used for
the third step, collected from existing literature, are not as strong as the priors
used for stages 1 and 2 but are still informative — especially those collected
from prior attribute-inference works and human-computer interaction (HCI) lit-
erature. Fourth, the final feature set of each intention is determined using priors,
feature-selection methods, or both. Fifth, the set of selected features is mapped
into network nodes; this includes aggregation, state-elicitation and discretization
strategy. Sixth, the temporal structure of each intention-specific DBN is specified
using priors, structure-learning methods, or both. Lastly, The DBN’s temporal
parameters are quantified using a combination of prior information and data.
The diagram in Figure 1 illustrates our approach as detailed above.

In Section 6 we use the above methodology to infer the values of five dynamic
attributes — behavioral intentions, using real-world, social-network datasets.
The behavioral intentions that we consider are weight-loss intentions (WT), vac-
cination intentions (VI), travel-purchase intentions (PI), borrowing intentions
(BI) and job-searching intentions (JI).

4 Features

A high-level diagram of our intention-inference model is shown in Figure 2. Note
that Figure 2 is brought for illustration purposes and thus only features edges
between layers; edges between specific nodes must be determined separately for
each intention according to its own unique priors, intention-specific features and
results of feature selection methods applied to it. To avoid a large conditional
probability table (cpt), we used a layering-divorcing technique and created a
layered network model: The first layer contains the target intention nodes that
we aim at inferring. The second layer contains either latent or partially-observed
nodes which represent external and internal factors that are highly influential
on the formation of behavioral intentions. The third layer contains observable
network features. They serve two purposes: assisting in inferring the behavioral
intentions, and serving as observed predictors for second layer’s latent variables.
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4.1 Second-layer features

Values of second-layer features were obtained using our surveys and included
in our training sets. In order to simulate a real-world inference task (which
only considers the public portion of online profiles), values of latent second-layer
features were omitted from our test sets (treated as missing values); instead, we
tried to infer them using publicly available network features.

Personality This variable represents five broad dimensions of personality
obtained from the “Big Five” model of personality dimensions. The big five
model distills personality into five traits: neuroticism, extraversion, agreeable-
ness, conscientiousness, and openness to experience. To measure the Big Five
personality traits among survey participants we used a short version of the Big
Five Inventory based on BFI-10 [22].

Demographic attributes We considered the following demographic at-
tributes: age, gender, ethnicity (and country of origin), marital status, occu-
pation group, income (latent variable). Only a subset of those attributes was
used in each model.

Situational variables Events that might trigger a behavioral intention.
Those events include personal-life transitions, professional-life transitions, ex-
ternal events (such as a holiday or an election), etc. Priors were obtained for
some intentions. For instance, life transitions were shown to have an important
impact on weight-loss intentions [3].

Emotions Different emotions may serve as either the cause of a behav-
ioral intention or as its effect. Therefore, we went beyond the binary emotion-
representation (positive-negative) and also considered fine-grained emotions. The
most studied model of discrete emotions is the Ekman model [6] which posits the
existence of six basic emotions: anger, disgust, fear, joy, sadness and surprise.
Since momentary emotion ratings are not particularly indicative of the behav-
ioral intentions explored in this work, survey participants were presented with
eight emotion categories (six basic emotions and two positive-negative emotion
categories) and were asked to rate their feelings over the past week /month/three
months in general.

Interest, Opinion Those variables represent the user’s level of interest and
opinion regarding topics related to a given intention.

4.2 Network features

The value of a given network feature was included in our datasets only if it was
part of the public portion of one of the user’s social-network profiles.
Numeric features (NUMERIC) We considered statistics about the user’s
activity (number of posts, status updates, number of uploaded photos etc), reac-
tions to the user’s content (number of tagged photos, for instance) and the user’s
reactions to others’ content. The latter measure was sparse, as both Facebook
and Instagram limit the visibility of such reactions. We also considered basic
statistics about the users’ network, but we limit ourselves to statistics that are
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Fig.2: A diagram of our static network model

both publicly visible and can be directly extracted from the user’s own social-
network profile/s (number of friends, followers-following ratio, public-figures-
non-public-figures following ratio, etc).

Raw Textual features (TEXT) Textual features were classified as either
user-generated (UG) features (including textual content that was written by
the user), or non-user-generated (NUG) features (textual features that were not
written by the user such as likes (Facebook) or hashtags (Instagram)). We limit
ourselves to textual content that is both publicly visible and was either produced
by the target user, or can be directly extracted from the user’s own social-network
profile/s. Raw textual features were not directly fed to our models. Instead,
each textual feature was analyzed using various linguistic methods as described
below; Textual-features-related-nodes in our network represent averaged score
(frequency) of a given category of a given linguistic feature among the user’s
raw textual features. Such nodes represent the prevalence of a specific linguistic
category among the entire set of raw textual features.

Miscellaneous features (MISC) Miscellaneous features include features
that are neither numeric nor textual, such as the mere existence of various social-
network accounts, visibility level/s that the user has chosen to apply to her
social-network accounts, profile attributes from which demographic attributes
can be extracted, etc. MISC features can be seen as social-network accounts’
metadata rather than data itself (NUMERIC, TEXT).

Linguistic features We use a broad range of linguistic features, created based
on our raw textual features.

Keyword-search (KWS-UG, KWS-NUG) For a given intention or an
event, A, we manually identified the most prominent keywords related to A.
We then performed a keyword search on our textual features. This resulted in
two groups of features, KWS-UG and KWS-NUG (keyword search applied to
user-generated /non-user-generated content).

LIWC (LIWC-UG, LIWC-NUG) LIWC is a text analysis tool that is
widely used in psychological studies [28]. Each list of words is associated with
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a semantic or syntactic category, such as negations, adverbs or tone. LIWC
analysis was applied to UG and NUG textual features.

Sentiment analysis, part-of-speech tagging (SA, PoS) These were only
applied to KWS-UG (SA and PoS) and KWS-NUG (SA), i.e., items that were
found to contain at least one relevant keyword. SA was applied to items that
were found to contain keywords that relate to the behavioral intention to be
inferred, in order to assess the user’s opinion on related topics. The use of PoS
tagging was more implicit; it was applied to items that were found to contain
keywords that are related to events in order to assess whether an event is relevant
to each inference task (use of first-person writing, tensed verbs etc).

Topic modeling (LDA-UG, LDA-NUG) Topics were extracted using
Latent Dirichlet Allocation (LDA). Shorter features (such as likes) and longer
features (such as posts) were considered separately using different parameters.

Emotions (NRC, LIWC) We automatically quantify emotions from our
UG textual features using LIWC and NRC. NRC is a publicly available lexicon of
words associated with different emotions, as well as general positive and negative
sentiment [20]. We assign a predicted emotion to each UG textual feature and
then average across all users’ features.

5 Temporal modeling using Dynamic Bayesian Networks

A Dynamic Bayesian Network is a sequence of T static bayesian networks. Each
BN represents a time slice (“slice”) of the DBN, ¢ € T, corresponding to one
instance of time. A DBN adds three components to a static BN: temporal vari-
ables, temporal edges and temporal evidence. For instance, if a static BN contains
the variables {X;},;cp, a DBN contains variables that can take different values
in different time slices, e.g. {X;:}jep,icT, as well as temporal edges between
them. Formally, a DBN is defined as a pair (By, B;) where By defines the prior
P(X;) and B is a two-slice temporal BN that defines P(X;|X;_1) by means of
a directed acyclic graph (PA(X]; ;) represents X ;’s parents):

P(Xi|X;1) = ] P(X; | PA(X;4)) (1)
jeD
A DBN-based approach to modeling social-network users: Each
social-network user is modeled using a set of Dynamic Bayesian Networks.
Specifically, let u be a social-network user, and let || = K be the set of u’s dy-
namic attributes we aim at inferring. u is represented by the set {(D:X*, T(X},))|k €
[K]}. D, corresponds to a DBN which aims at inferring an attribute X i, the
attribute X; of a user u, and Dy [i] corresponds to the i’th slice of the DBN.
T(X;) refers to X;’s unique “sampling rate”: the rate in which data for each at-
tribute is sampled from {f}' i }ses, - The sampling rate T'(X}) associated with
a DBN D:X* should be determined according to the unique attribute to be in-
ferred. For instance, if our target attributes are various behavioral intentions, the
sampling rate of each intention’s DBN should be determined according to the
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intention-behavior (IB) interval [24] of intention X}; the shorter the IB interval
of an intention X, is, the higher T'(X}) should be.

After determining its feature set and its structure, as we describe in the fol-
lowing subsection, each of the user’s DBNs can be used to perform temporal
inference of its associated attribute at any point in time. For an inference per-
formed at time ¢ = 0, before any training data has been collected, inference of
Xi'o will be done solely based on fo 710] as a “prior network” — where cpts
are solely determined according to prior information. At time point ¢ = ¢ s.t.
t > 0 inference of X7, is done by training a new slice of DBNj;, Dy’ [t] using
an up-to-date set of training records where each record is composed of ¢ — 1
sets of historical features {F;|i < t}, a set of current features {F};}, and a set of
historical labels, {I;|i < t}.
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Fig.3: A DBN representation of various intentions.

In both cases, inference of attribute X, will be done using {#}'}, the sampled
feature sets of w at time ¢; {F|i < t}, sampled feature sets of the user from
prior points in time; and historical labels (if exist), {I*|¢ < t}. In addition, when
the target attribute to be inferred is a behavioral intention, we can input the
inference algorithm with a set of historical behaviors, {B}*|i < t}. A behavior at
time ¢ may suggest on an associated intention at time ¢ — 1 or ¢ — 2 thus allowing
us to retroactively update the network’s parameters to reflect the new insights.

5.1 Feature selection and model selection

We designed a two-level, hybrid feature-selection method. Due to the high num-
ber of correlations between features, we opted for a multivariate feature-selection
method based on bayesian networks. However, solely relying on a DBN-based
feature selection method may lead to overfitting. Hence, we employed a hybrid
feature-selection approach. First, a simple, univariate feature selection method
was applied to a subset of the features on which we didn’t have strong priors.
For that purpose, we used a mutual information-based feature-selection method
and removed all the features that received a score below a certain threshold.
The resulting features, as well as the set of latent/high-prior features were the
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input for the second phase which uses two structure-learning algorithms: Greedy
Thick-Thinning and the PC algorithm [26]. This phase aimed at identifying the
best features using Markov Blankets.

A Markov Blanket of a variable ¢ is a minimal variable subset conditioned
on which all other variables are probabilistically independent of ¢. The Markov
Blanket of a DBN node, M B(t) is the set of its parents, P(t); children, C(t);
and spouses, U(t) as encoded by the structure of the DBN. As shown in [13],
the Markov Blanket of a given target variable is the theoretically optimal set of
variables to predict its value. However, simply considering all the features in the
Markov Blanket of the behavioral intention node is unsatisfactory in our case,
due to the existence of latent variables. Thus, a better strategy would be to
first find an “approximated” Markov Blanket of the target node, M B’(t) which
includes the variables in the sets P(t), C(t) and U(t) as discussed above. Then,
identify the Markov Blanket of each latent variable that is also a member of the
target’s approximated Markov Blanket and include the features in the union of
those blankets in our feature set (in addition, of course, to features in M B’'(t)).
That is, our feature set is:

{MB'(t)} U{MB(I)| I € SN MB'(t)}

Where S represents the set of latent variables in our model. The above strat-
egy would have probably been sufficient if our datasets were complete. However,
our datasets contain missing values which had to be imputed before running
the structure-learning algorithm. Hence, for some variables we consider an “ex-
tended” notion of a Markov Blanket which also includes certain variables that
belong to the variable’s second-degree Markov Blanket. Specifically, if a given
variable, v, represents an observed attribute with more than 50% missing values
(m()) and for which we do not have a strong prior (p()), we consider a restricted
notion of v’s second degree Markov Blanket, and add both its direct parents,
P(v), and its direct children, C(v), to our feature set. Let F' be our variable-set
before applying feature selection, and O the set F'\ S. Our final feature set is:

{MB'(t)} U{MB(I)|I€SNMB'(t)} U
{P(I)|T€eONMB'(t) A\m(I) > 50% A p(I) = false} U
{C(I)| TeONMB'(t) Am(I) > 50% A p(I) = false}

Model selection and parameter learning: The approach described above
not only yields a feature set but also a network structure, comprised of the nodes
in the feature set and the edges connecting features in the feature set. Some edges
were corrected in order to reflect strong prior information. The balance between
automatic structure-learning algorithms and the use of priors for structure elic-
itation, as well as the initial parameters for the structure-learning algorithms
(when applicable) were validated using cross-validation. Note that while infor-
mation gathered from prior literature would have probably been sufficient to
model most of the meaningful dependency relations between an intention and
second-layer features, relations between third-layer features and other features,
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as well as between third-layer features and the target intentions can not be cap-
tured solely using priors, as those types of relations are not as extensively studied
as behavioral intentions-second-layer features relations. Parameter learning was
performed using the Expectation-Maximization (EM) algorithm [5]. Hence, we
were able to combine both labeled and unlabeled data in our training sets as
explained in Section 6 as well as use the original training datasets which contain
missing values. We believed that since our test datasets include a large number
of missing values, training the DBN on incomplete datasets will allow the DBN
to learn relations between missing and observed values of different features. Prior
information was combined in the model using a Dirichlet prior.

5.2 Intention-specific models

Figure 3 presents a high-level overview of three intention-specific DBNs (DBNs
for JI and BI, as well as third-level features are omitted due to lack of space).
As can be seen, a temporal link is created between variables that represent
our target intentions in consecutive time slices. P(intention;11 | intention;, U)
represents the intention’s evolution over time, given changes in other temporal
variables in the network (U).

Interest-intention is an interesting relation. First, we see that interest may
serve as either a cause or an effect of different intentions. Second, interest seems
to be a cyclic process as can be concluded from P(WI; | interest;,U) and
P(interest,11 | W1I,), for example. Such a temporal relation might be attributed
to the fact that interest in a certain topic assists in forming a behavioral inten-
tion related to that topic. After the intention has been formed, a new level of
interest is formed, aimed at understanding how to fulfill that intention. In ad-
dition, P(PI;4, | interest;, U) and P(interest;11 | PI;11) show that both prior
interest-level and current interest-level are important determinants of some in-
tentions. Such historical data can assist in identifying a sudden increase in the
user’s interest level.

“Opinion” is another interesting variable; it is influenced by multiple factors
such as personality traits and demographics as demonstrated by VI's P(opinion;i1 |
opinion;, education, age, personality). Note that this cpt also contains opinion,.
This represents the fact that oftentimes, opinion is a self-propelling process:
opinion at a given point in time, in addition to other factors, influences opinion
at future points in time. A similar cpt is seen in “COVID-19 concern”.

Fine-grained emotions were not used in any model. Furthermore, we weren’t
able to extract from the data meaningful inter-slice relations between different
emotions and the target intentions. We attribute that difficulty to the fact that
unlike other features, emotions change quickly. Thus understanding emotions’
temporal evolvement mechanism for each intention requires the use of finer-
grained sampling rates

In Section 7 we show our inference results (Lauritzen-Spiegelhalter algo-
rithm [16]) when using a two-slice DBN and social-network data sampled twice.
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Table 1: Datasets’ statistics

Intention VI WI BI PI JI
% Intending,
first-wave dataset .58 38 A7 .24 .19
% Intending,
second-wave dataset .66 4 13 .19 .23

6 Data collection

We designed and distributed a comprehensive survey, created and hosted us-
ing Qualtrics survey platform. The first part of our survey contained questions
about the participants’ personal attributes, as discussed in Section 4. The second
part contained the following statements, which users were asked to rank (as well
as dummy statements about unrelated intentions): “I am planning to start a
weight-loss regime within the next 1-4 weeks” and “I am currently trying to lose
weight” (weight-loss intentions); “I am planning to look for a new job within the
next 1-4 weeks” and “I am currently looking for a new job” (job-searching inten-
tions); “I am planning to apply for a loan within the next 1-4 weeks” (borrowing
intentions); “I received a flu vaccine this season” — depending on the answer to
that statement the following statement was presented for either the upcoming
(2020-2021) flu season or the next season (2021-2022): “I am planning to get
vaccinated against influenza this upcoming fall-winter/next year” (vaccination
intentions); “I am planning to make a travel-related purchase within the next
1-4 weeks” (travel-purchase intentions). All survey data was anonymized after
collection. We informed participants that their responses would be used for aca-
demic research. We implemented several methods for identifying and excluding
data from participants who answered unreliably, as extensively discussed in [12].

Datasets Survey data was collected in two waves with a three-month lag.
Training and test datasets include data obtained from Amazon Mechanical Turk
(MTurk), Facebook, Instagram and Linkedin. Our datasets include both labeled
and unlabeled data; unlabeled data is specifically important when using multi-
wave data, as a considerable number of participants dropped out after the first
wave: from 1300 respondents who participated in our first-wave survey, only 803
respondents participated in our second-wave survey (0.617 response rate). In
order to both reduce non-response bias and create a bigger training dataset, we
chose a subset of our partially-labeled data records which belong to participants
who dropped out (missing attributes were treated as missing values) and added
it to our training set. Our training datasets, Djl- (first-wave data for intention j)
and DJQ» (second-wave data for intention j) consist of 780 and 592 labeled and
unlabeled data records, respectively. Our test datasets, Dg’ (first-wave data for
intention j) and D;* (second-wave data for intention j) consist of 520 and 361
labeled data records, respectively.
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Table 2: Results of the DBN models presented in this paper

Intention |Micro F1, (1)|Macro F1, (1)|Micro F1, (2)|Macro F1, (2)

Vaccination

intentions 732 .73 .75 741

Weight-loss

intentions .832 .815 .831 .82

Borrowing

intentions .663 .04 .662 .026
Travel-purchase

intentions .763 .691 .812 732
Job-searching

intentions 704 .623 147 .699

7 Experimental Results

For a given intention, j, we tested its DBN, DB N}, using our datasets as follows:
in the first stage, (1), we trained DBN; using D} and tested it on D?. Only the
first DBN’s slice was affected in this stage. In the second stage, (2), we trained
DBN; using DJ2- (implicitly using Djl» as well due to the use of priors) and tested
it on D;*, using evidence data from D7 as well. Hence, inference results in (2) were
obtained based on data and parameters from two slices of the DBN. Note that
“evidence data” contains only historical values of publicly available features, and
does not include historical labels as in most cases exact information on historical
labels for all prior test sets will not be available in real time. As seen in Table
1 (% intending), some of our datasets are highly imbalanced. Moreover, each
dataset contains a large number of missing values — attributes that the user
has not publicly revealed on her social-network accounts. Those facts make the
inference task highly challenging.

Table 2 provides a detailed summary of our results. We report Micro F1 and
Macro F1 scores for each intention-specific DBN. In addition, we compare our
ROC AUC scores to those achieved by a Support Vector Machine (SVM) and a
Decision-Tree Ensemble (boosted decision trees, BDT).

As can be seen from Table 2, different intentions achieved significantly differ-
ent Micro F'1 and Macro F1 scores. BI's score is the lowest, whereas WI’s score
is the highest. A possible explanation for BI’s performance is that applying for
a loan is an intention that is oftentimes not publicly shared on social networks.
However, other non-publicly shared intentions such as JI scored significantly bet-
ter than BI. This can be attributed to the fact that we were able to find other
strong predictors for JI which don’t depend on user-generated content, whereas
for BI we failed to do so.

Figure 4 compares our ROC AUC scores to those achieved by two different
types of classifiers: BDT and SVM (RBF kernel). Hyperparameters were tuned
using a grid search over a large grid covering at least 7 options for each numeric
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Fig.4: Average ROC AUC scores

hyperparameter. Imputation of missing values was done using Scikit-Learn’s
Iterativelmputer (using a random-forest regressor), a multivariate imputation
method. As seen in Figure 4, our models outperform both SVM and BDT on
all five intentions, though the differences in results vary between intentions. A
possible explanation is the varying number of missing values within the unique
set of features of each intention, or the varying number of latent variables in
each DBN. Another possible explanation is the varying number of temporal
dependencies between features of each target intention.

When comparing Micro F1 and Macro F1 scores achieved in different stages
((1) and (2)) using the same DBN, we can see that the differences are more
pronounced for PI and JI. This can be attributed to the underlying differences
between different intentions. As evidenced by our data, intentions such as WI
and VI can be seen as “continuous intentions” in the sense that their intention-
behavior interval is longer than for other intentions; the persistence rate of such
intentions is significantly higher than rates reported for PI or JI. Another ex-
planation for the varying differences is the different set of determinants of each
intention. While the importance of some of those determinants stems from their
intra-slice values (that is, their values at a given point in time), the impor-
tance of others is derived from a combination of intra-slice values and inter-slice
change patterns between slices. For instance, various features related to mon
user-generated content serve as excellent predictors of PI in (2), but only as
solid predictors in (1).
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