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Abstract. In this work, we propose an approach for aggregating classi-
fiers using positional voting techniques. We extend the positional voting
by optimizing weights of the preferences to better aggregate the commit-
tee classifiers. Staring from initial weights determined by a voting algo-
rithm the aggregating weights are optimized by a differential evolution
algorithm. The algorithm has been evaluated on a human action dataset.
We demonstrate experimentally that on SYSU 3DHOI dataset the pro-
posed algorithm achieves superior results against recent algorithms in-
cluding skeleton-based ones.
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1 Introduction

Ensemble techniques combine a number of diverse models to build a composite
model that improves generalizability/robustness over each of them alone, either
by using many different modeling algorithms or using different training datasets.
They involve aggregating multiple models with the aim of decreasing both bias
and variance. A classifier committee (or ensemble) is a classifier constructed by
combining the predictions of multiple classifiers [1].

Classifier committees tend to yield better results if the individual classifiers
work as independently as possible, i.e. when there is a significant diversity among
the models [2]. The conventional ensemble methods include bagging, boosting,
and stacking-based methods. These methods have been well studied in recent
years and applied widely in different applications [3]. More recent approaches
for ensemble learning such as XGBoost and LightGBM [4] permit achieving very
competitive results on commonly used benchmark datasets. In the last decade,
due to availability computational power that permits training large ensembles
in a reasonable time, the number of ensemble-based applications has grown in-
creasingly.

In ensemble learning we can distinguish three phases [5]. The first one consists
in generating a set of models, and aims at obtaining a pool of models. In the
second step a single classifier or a subset of best classifiers is selected. In the
last phase a strategy to combine individual models is defined. The combination
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of classifiers can be achieved using class labels, such as in the majority voting
scheme, which calculates the prediction on the basis of the most frequent class
assignment, or by utilizing scores of individual classifiers. In [6], a weighted
voting ensemble was employed to improve the classification model’s performance
by combining classification results and selecting a group with the highest vote
based on the weights given to the single classifiers. The impact of ensemble size
with majority voting and optimal weighted voting aggregation rules has recently
been discussed in [7]. Ranked voting approaches are recommended for combining
classifiers if and when the classifiers can rank the order of the classes [8]. Borda
count is a rank-based combination technique in which each classifier ranks the
classes according to their potentiality to be the correct class [9]. Weights are
linearly proportional to position in the ordering. It is considered to be one of the
simplest scoring rules. Recently, in [10] a feature selection using election methods
and ranker clustering for ensembles has been proposed.

Human action recognition is an important component in many applications
including but not limited to ambient intelligence [11], human-computer interac-
tion systems, and video surveillance. Little research has been done in the area of
human action recognition on raw depth maps [12]. Recently, in [13] an algorithm
for human action classification on depth motion images and Laplacian pyramids
as structured multi-scale feature maps has been proposed. In a recent work [14],
voting rules as an aggregation technique for classifier combination have been
utilized to improve human action recognition on raw depth maps. In this work,
an approach to aggregating classifiers through positional voting techniques is
proposed. The proposed optimized positional voting achieves better results in
comparison to results achieved by Borda count, Coombs, Bucklin, and Copeland.

2 Algorithm

The architecture of the classifier committee is based on architecture discussed
in [15]. With the feature extraction in mind, the main difference is that in this
work a Dynamic Time Warping (DTW) is utilized instead of the shapelets. In
Section 3 we compare results achieved by both versions of the algorithm. In
Subsection 2.1 we outline main ingredients of classifier committee. Afterwards,
in Subsection 2.2 we present a DTW-based extraction of action features. Finally,
in Subsection 2.3 we introduce the optimized positional voting.

2.1 Main Ingredients of Classifier Committee.

Having on regard that most frequently used benchmark datasets for human ac-
tion recognition on depth maps contain limited number of depth map sequences,
we utilize a multiple classifier system. The recognition of human actions is per-
formed on raw depth maps only. We learn various features in different domains,
like single depth map, time-series of embedded features, time-series represented
by DTW-based features. A Siamese neural network as well as a convolutional
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autoencoder (CAE) are learned on single frames to extract features. The multi-
variate time-series of Siamese features are fed to the DTW in order to extract the
features representing actions. The multivariate time-series of CAE features are
fed to a 1D CNN in order to extract another representation of action features.
The discussed features are common for all classes. We extract also class-specific
action features using TimeDistributed and LSTM layers (TD-LSTM). Multi-
class logistic classifiers are trained on concatenated class-specific features and
features common for all classes, see Fig. 1. The most discriminative classifiers
are selected using a differential evolution (DE) [15]. The final decision is made
through aggregating classifiers on the basis of voting.

Fig. 1. Flowchart of the classifier committee operating on learned features, and aggre-
gating decisions of selected classifiers via optimized positional voting.

2.2 Dynamic Time Warping-based Action Features

In order to compactly represent actions we learn features on representative depth
maps. A Siamese neural network is trained on pairs of single depth maps as
a representation of the whole depth map sequences. The network trained on
such a compact representation of depth map sequences is used to extract frame-
features on depth map sequences. In contrast to the CAE it has been trained
only on frontal depth maps. In the current implementation, for each sequence
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from the training subset a middle depth map as a representation the whole depth
map sequence has been selected and then included in a training subset for the
Siamese neural network. The Siamese neural network operates on depth maps
of size 1 × 64 × 128. It consists of 64 Conv2D filters of size 5 × 5 followed by
max-pooling, 32 Conv2D filters of size 5 × 5 followed by max-pooling, which
in turn are followed by the flattening layer and then a dense layer consisting
of 128 neurons. The neural network has been trained using the contrastive loss
[16]. The neural network trained in such a way was used to extract features on
every depth map from a given input sequence. A human action represented by a
number of depth maps is described by a multivariate time-series of length equal
to number of frames in the sequence and dimension equal to 128.

In time-series analysis, the DTW can be employed for measuring similarity
between two temporal sequences, which may vary in speed. Let us assume that
our aim is to measure the distance between two time-series: a = {a1, a2, . . . , an}
and b = {b1, b2, . . . , bn}. Let us denote by M(a,b) the n × n pointwise dis-
tance matrix between a and b, where Mi,j = (ai − bi)

2. A warping path P =
(u1, v1), (u2, v2), . . . , (us, vs) is a set of pairs of indexes that define a traversal of
M . The valid warping path must satisfy: (u1, v1) = (1, 1) and (us, vs) = (n, n)
as well as 0 ≤ ui+1 − ui ≤ 1 and 0 ≤ vi+1 − vi ≤ 1 for all i < n. Let pi stand for
the distance between elements with indexes ui and vi for the i-th pair of points.
The distance for a path P is: DP (a,b) =

∑s
i=1 pi. The DTW path P ∗ has the

minimum distance

P ∗ = min(DP (a,b))
P∈P

(1)

over all possible paths P, which can be found by dynamic programming (DP).
For a given depth map sequence we calculated the DTW distances with respect
to all remaining depth maps sequences in the training subset. For each depth
map sequence the DTW distances between multivariate time-series have been
determined for the discussed above Siamese features. The distances between a
given sequence and all remaining sequences from the training set have then been
utilized as features. This means that the resulting feature vector is of size equal
to nt × 2, where nt denotes the number of training depth map sequences.

2.3 Optimized Positional Voting

In a few papers the voting-based aggregation techniques have been utilized to
improve the performance of ensembles [10]. Recently, in [14] Borda counts, Buck-
lin and Coombs have been investigated in terms of improving the performance
of action classification using a classifier committee. In this work, we examine
positional voting [17], in which points are allocated to the candidates under
consideration based on the order they were ranked. In such voting systems, the
voters order the candidates from best to worst, and a pool of winners is chosen on
the basis of positions of the candidates in the preference order. The rank position
of each voter preference has allocated a specific fixed weighting [17]. A candidate
with the most points overall wins. Borda counting is an important example of
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positional voting techniques. Figure 2 illustrates the process of positional voting
in an example classifier committee.

Fig. 2. Positional voting.

In this work, we extend the positional voting by optimizing weights of the
preferences. Area Under the ROC (Receiver Operating Characteristics Curve),
commonly called AUC has been utilized in the objective function. Direct opti-
mization of AUC can lead to solving an NP-hard problem since it can be cast into
a combinatorial optimization problem. Recently, in [18] a fast stochastic AUC
optimization with O(1/n) convergence rate has been proposed. In this work, the
objective function mentioned above has been optimized using the differential
evolution. The differential evolution initiated its search from a population of
weights determined by the Borda count algorithm. The convergence is reached
when the standard deviation of the fitness function for each individual in the
population, normed by the average, is smaller than the given tolerance value.
The weights determined in such a way have been utilized in making the final
decision by the classifier committee.

Figure 3 presents a schematic diagram of algorithm steps. In the considered
toy example, we assume that a dataset consists of five samples, whereas the
classifier committee comprises four classifiers. The dataset is split into a training
subset on which the classifiers are trained and a validation subset on which the
weights are optimized. This means that for training of the classifiers as well
as optimization of the weights of the preferences the training data was further
divided into the training subset and the validation subset. In the considered
example, all four classifiers are trained on the training subset. The validation
subsets are fed into the trained classifiers, whose outputs are stored for the
subsequent optimization. The optimization of the weights is conducted using
the fitness function with AUC components for all validation samples.

The classifiers have been trained on the training subset, the weights of the
preferences have been optimized on the validation data, whereas the performance
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Fig. 3. Optimized positional voting.

of the optimized classifier committee has been judged on the test data. Such an
approach is often called holdout validation. Figure 4 depicts data split on a toy
example. As illustrated on discussed figure, a 5-fold data split has been employed
for the training and optimization of the classifier committee.

Fig. 4. Data split for training classifiers and optimizing weights of the preferences.
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3 Experimental Results

The performance of proposed algorithm has been determined on publicly avail-
able SYSU 3D Human-Object Interaction Set (SYSU 3DHOI) [19]. The dataset
consists of 480 RGB-D image sequences with 12 action classes that include calling
with a cell phone, playing with a cell phone, drinking, pouring, moving a chair,
sitting on a chair, packing a backpack, wearing a backpack, sweeping, mopping,
taking something out from the wallet and taking out a wallet. Each activity is a
kind of human-object interaction. Actions were performed by forty performers.
This dataset is challenging for human action recognition as a number of actions
have similar motions or the same operating object at the early temporal stages.
The algorithm has been evaluated in setting-1 [19] in which for each activity
class, half of the samples is selected for training and the rest samples are used
in testing. The evaluations were also performed in cross-subject setting, which
is more challenging in comparison to the setting-1 using the same subjects for
both training and testing. According to a recommendation in [19], the evalu-
ations were done on thirty training/testing splits. Because the performers are
not extracted from the background, they have been extracted by us. A window
surrounding the performer has been determined on each frame and then used to
crop the raw depth map. It has been then scaled to the required input shape.

Table 1 presents accuracies, precisions, recalls and F1-scores achieved by our
algorithm on the SYSU 3D HOI dataset in the setting-1. In discussed configura-
tion of the algorithm the features extracted by the Siamese neural network have
been processed by shapelets algorithm to extract features representing actions,
same as in [15]. In 3rd and 4th rows there are results achieved by DE optimiz-
ing the classification accuracy and DE optimizing the objective function pro-
posed in [20], respectively. We add new results, which were achieved by classifier
committee built on voting aggregation schemes: Borda count, Coombs, Bucklin,
and Copeland, see rows 5–8 in Tab. 1 as well as proposed in this work: opti-
mized positional voting and optimized positional voting operating on a subset of
classifiers selected in advance. As we can observe, the optimized positional vot-
ing achieves superior results in comparison to results achieved by Borda count,
Coombs, Bucklin and Copeland, c.f. results in rows 5–8 and row 9. The classifi-
cation performance attained by the optimized positional voting, which operates
on outputs of classifiers selected in advance is superior in comparison to results
obtained by the classifier committee with classifiers selected in advance, see also
experimental results in 4th row.

Table 2 presents accuracies, precisions, recalls and F1-scores achieved by our
algorithm on 3D HOI dataset in the setting-1, where features representing hu-
man actions have been extracted by the DTW algorithm. Comparing results
achieved by shapelets and DTW we can observe that results achieved by DTW
are superior in comparison to results achieved by shapelets algorithm. Among
election methods the best results have been achieved by the Copeland. The re-
sults achieved by classifier committee based on the Copeland are slightly better in
comparison to results achieved by the hard voting and the soft voting, which are
frequently used as aggregation techniques in the ensembles. The DE-sel. ens.
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Table 1. Recognition performance on SYSU 3DHOI dataset (setting-1) using
shapelets.

voting num. class. Accuracy Precision Recall F1-score

hard voting 12 0.9167 0.9217 0.9167 0.9171

soft voting 12 0.9079 0.9102 0.9079 0.9071

DE-acc. 12 0.9079 0.9110 0.9079 0.9073

DE-sel. ens. 7 0.9254 0.9271 0.9254 0.9246

Borda count 12 0.9079 0.9141 0.9079 0.9079

Coombs 12 0.9035 0.9113 0.9035 0.9029

Bucklin 12 0.9035 0.9097 0.9035 0.9030

Copeland 12 0.9035 0.9097 0.9035 0.9030

opt. pos. voting 12 0.9167 0.9223 0.9167 0.9166

DE-sel. ens., opt. pos. voting 7 0.9254 0.9300 0.9254 0.9259

algorithm selected seven classifiers and the results achieved by classifier com-
mittee built on such a pool of the classifiers are worse in comparison to results
obtained by discussed methods. The results achieved by the optimized positional
voting are better in comparison to results achieved by classifier committee with
DE-acc-based classifier selection. As we can observe, the best results have been
achieved by the optimized positional voting, which operates on outputs of clas-
sifiers selected in advance.

Table 2. Recognition performance on SYSU 3DHOI dataset (setting-1) using DTW.

voting num. class. Accuracy Precision Recall F1-score

hard voting 12 0.9341 0.9298 0.9341 0.9298

soft voting 12 0.9341 0.9298 0.9341 0.9298

DE-acc. 11 0.9266 0.9211 0.9266 0.9211

DE-sel. ens. 7 0.9340 0.9298 0.9340 0.9298

Borda count 12 0.9304 0.9254 0.9304 0.9254

Coombs 12 0.9230 0.9167 0.9230 0.9167

Bucklin 12 0.9336 0.9298 0.9336 0.9298

Copeland 12 0.9342 0.9374 0.9342 0.9341

opt. pos. voting 12 0.9386 0.9410 0.9386 0.9385

DE-sel. ens., opt. pos. voting 7 0.9386 0.9414 0.9386 0.9384

Table 3 presents accuracies, precisions, recalls and F1-scores achieved by our
algorithm on SYSU 3D HOI dataset in the cross-subject setting (setting-2). As
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in the setting-1, the features extracted by the Siamese neural network have been
further processed by shapelets algorithm in order to extract features represent-
ing actions. As previously, among election methods the best results have been
achieved by the Copeland. The optimized positional voting permits achieving
better classification performance in comparison to performance obtained by the
Copeland. Once again, the best results have been achieved through selecting the
most discriminative classifiers by the DE and then executing optimized positional
voting on outputs determined by such a pool of best classifiers.

Table 3. Recognition performance on SYSU 3DHOI dataset (setting-2, cross-subject)
using shapelets.

voting num. class. Accuracy Precision Recall F1-score

hard voting 12 0.8991 0.9079 0.8991 0.8990

soft voting 12 0.9035 0.9098 0.9035 0.9036

DE-acc. 2 0.9123 0.9175 0.9123 0.9119

DE-sel. ens. 2 0.9211 0.9259 0.9211 0.9209

Borda count 12 0.8904 0.8933 0.8904 0.8896

Coombs 12 0.8904 0.8925 0.8904 0.8895

Bucklin 12 0.8947 0.8967 0.8947 0.8941

Copeland 12 0.8991 0.9079 0.8991 0.8990

opt. pos. voting 12 0.9079 0.9107 0.9079 0.9077

DE-sel. ens., opt. pos. voting 2 0.9211 0.9219 0.9211 0.9201

Table 4 presents results obtained in the cross-subject setting (setting-2),
where features representing actions have been extracted by the DTW algorithm.
Amongst the election-based methods the best results have been achieved by the
Coombs. A classifier committee built on only three best classifiers selected by the
DE algorithm, achieved superior results in comparison to results discussed above.
The number of the most discriminative classifiers selected by the DE optimizing
the accuracy is far larger and the resulting classification performance is smaller.
The classification performance achieved by the optimized positional voting is
better than performance achieved by common election methods. It is smaller in
comparison to performance achieved by the DE-sel. ens. algorithm. As we can
observe, the best results have been achieved by the optimized positional voting,
operating on outputs of classifiers selected in advance.

In summary, in both settings, both with shapelets and DTW-based algo-
rithms, the best classification performances have been achieved by the optimized
positional voting operating on subset of classifiers selected in advance. In all con-
sidered cases the optimized positional voting achieved better results than Borda
count, Coombs, Bucklin and Copeland. The results achieved by DTW-based
algorithm are better in comparison to shapelets-based algorithm [15].
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Table 4. Recognition performance on SYSU 3DHOI dataset (setting-2, cross-subject)
using DTW.

voting num. class. Accuracy Precision Recall F1-score

hard voting 12 0.9230 0.9211 0.9230 0.9211

soft voting 12 0.9230 0.9211 0.9230 0.9211

DE-acc. 11 0.9204 0.9167 0.9204 0.9167

DE-sel. ens. 3 0.9291 0.9254 0.9291 0.9254

Borda count 12 0.9159 0.9133 0.9159 0.9123

Coombs 12 0.9202 0.9167 0.9202 0.9167

Bucklin 12 0.9152 0.9123 0.9152 0.9123

Copeland 12 0.9079 0.9098 0.9079 0.9074

opt. pos. voting 12 0.9211 0.9242 0.9211 0.9207

DE-sel. ens., opt. pos. voting 3 0.9291 0.9343 0.9291 0.9295

Table 5 presents action recognition accuracies that are achieved by recent
algorithms. As we can observe, the proposed algorithm achieves superior results
against all recent algorithms on challenging 3D HOI dataset. It outperforms all
recent algorithms on both settings. As far as we know, on SYSU 3DHOI dataset
the best classification accuracies among skeleton-based algorithms achieves a
recently published SGN algorithm [21]. The proposed algorithm achieves far
better classification accuracy on the discussed dataset.

Table 5. Comparative recognition performance of the proposed method with recent
algorithms on 3D HOI dataset.

Method Modality setting Acc. [%]
LGN [22] skel. II 83.33
SGN [21] skel. II 86.90
MSRNN [23] depth+RGB+skel. II 79.58
LAFF [24] depth+RGB II 80.00
PTS [25] depth+skeleton II 87.92
bidirect. rank p. [26] depth I 76.25
bidirect. rank p. [26] depth II 75.83
D3C [14] depth I 88.75
D3C [14] depth II 92.98
HAR [15] depth I 93.54
HAR [15] depth II 92.11
Proposed method depth I 93.86
Proposed method depth II 92.91
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4 Conclusions

In this paper, we presented an approach to aggregating classifiers through po-
sitional voting techniques. The proposed optimized positional voting achieved
better results in comparison to results achieved by Borda count, Coombs, Buck-
lin and Copeland, which have been previously used in classifier committees to
combine decisions. We demonstrated experimentally that significant gains in
classification performance can be obtained by executing the proposed optimized
positional voting on decisions of classifiers selected in advance by the DE algo-
rithm.
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