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Abstract. Mining imbalanced datasets is a challenging and di�cult
problem. In this paper we adress it by proposing GEP-NB classi�er based
on the oversampling technique. It combines two learning methods � Gene
Expression Programming and Naïve Bayes, which cooperate to produce
a �nal prediction. At the pre-processing stage a simple mechanism for
generating synthetic minority class examples and balancing the training
set is used. Next, two genes g1 and g2 are evolved using Gene Expression
Programming. They di�er by applying in each case a di�erent procedure
for selecting synthetic minority class examples. If the class prediction
by g1 agrees with the class prediction made by g2, their decision is �-
nal. Otherwise the �nal predictive decision is taken by the Naïve Bayes
classi�er. The approach is validated in an extensive computational exper-
iment. Results produced by GEP-NB are compared with performance of
several state-of-the-art classi�ers. Comparisons show that GEP-NB o�ers
a competitive performance.

Keywords: Imbalanced data · Oversampling · Gene expression pro-
gramming.

1 Introduction

Datasets with an unequal distribution of classes are commonly referred to as
imbalanced ones. Unequal distribution of classes is encountered in numerous
real-life situations such as, for example, fault diagnosis, medical diagnosis, fraud
detection, credit rating, and many other critical applications. During the last two
decades numerous approaches, techniques and algorithms have been proposed
to deal with mining imbalanced datasets. Our research goal is to extend the
range of available approaches for mining imbalanced datasets by proposing and
validating an e�ective new classi�er based on a novel oversampling procedure
and GEP and NB learners integrated using a semi-ensemble architecture. In such
an architecture at least two out of three base learners have to agree when taking
the predictive decision.
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Algorithms and methods proposed for mining imbalanced datasets can be
broadly categorized as data-level, algorithm-level, and hybrid approaches. Data-
level approaches can be further divided into oversampling and undersampling
methods. Their goal is to transform the dataset used for learning prior to apply-
ing some learners. Such transformation usually leads to achieving the balanced
or, at least, a better balanced distribution of classes.

Our motivation for using GEP and NB for inducing base classi�ers has been
based on the earlier performance of both techniques in data mining applications.
A review of numerous successful GEP applications in machine learning can be
found in [13]. Naïve Bayes is a probabilistic classi�er that can achieve a high ac-
curacy level [10]. Besides, NB learners are scalable and require some parameters
linear in the number of variables in a learning problem. Both types of learn-
ers, that is GEP and NB are based on di�erent philosophies, which makes their
prediction fairly independent. The above feature plays an important role in the
proposed approach where NB has a decisive role in the case when GEP induced
base learners produce di�erent predictions.

The rest of the paper is organized as follows. Section 2 contains a concise
overview of the related work. Section 3 presents the proposed learner named
GEP-NB. Section 4 discusses results of an extensive computational experiment
carried out to validate the approach. Final Section 5 contains conclusions and
suggestions for future research.

2 Related work

In this Section we will brie�y review several learners, including those used for
mining imbalanced datasets, that are used for comparison and validation pur-
poses in Section 4.

The simplest approach to balancing imbalanced datasets are random under-
sampling (RUS) and random oversampling (ROS). RUS works through random
elimination of instances from majority class, and ROS through random replica-
tion of minority class instances. Both approaches have disadvantages � RUS may
eliminate potentially informative examples and ROS may cause an over�tting.

One of the most often used approaches for mining imbalanced datatests is
SMOTE - an oversampling technique proposed in [3]. In SMOTE the minority
class is oversampled by introducing synthetic instances selected randomly and
iteratively along the line segments joining some of the k minority class nearest
neighbors until the balance between classes is achieved. Well known extension
of SMOTE is the ADASYN method [11]. In [24] an approach named LLE for
enhancing the SMOTE by incorporating the locally linear embedding algorithm
was proposed. Another improvement of SMOTE obtained by introducing the
PCA framework was proposed in [20]. Further, numerous, extensions and mod-
i�cation of SMOTE are reviewed in [6].

An approach to oversampling strategy using a rough�granular computing
approach (RGA) was proposed in [2]. Another approach based on the rough set
theory was proposed in [5]. The authors proposed a method for feature selection
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for imbalanced datasets using the neighborhood rough set theory. The approach
assumes that imbalanced distribution of classes re�ects the de�nition of the
feature signi�cance. A discernibility-matrix-based feature selection method is
next de�ned and used in the feature selection algorithm (RSFSAID). Finally, a
particle swarm optimization algorithm is suggested to optimize parameters of
the algorithm.

Recently, an approach for enhancing the performance of oversampling meth-
ods for class imbalance classi�cation was proposed in [16]. The authors propose
a novel hybrid technique named ant colony optimization resampling (ACOR) to
overcome class imbalance.

In [27] the authors claim that oversampling methods are often disrupted by
noise when data are not well separated. As a remedy they propose the framework
using the Laplacian eigenmaps (EIGEN FRAMEWORK) to �nd an optimal
dimensional space, where the data are well separated and the generation of noise
by SMOTE based oversampling methods can be avoided or minimized.

Tomek Link (TL) is an undersampling technique originating from [21]. One of
the oldest approaches to undersampling is the Edited Nearest Neighbors (ENN)
algorithm based on Wilsons rules [26]. The default behavior of ENN is to remove
examples from the majority class that are misclassi�ed by their k nearest neigh-
bors. The Repeated ENN (RENN) runs the ENN algorithm repeatedly until all
instances remaining have a majority of their neighbors with the same class [25].
One Side Selection (OSS) algorithm proposed in [14] is another undersampling
technique. The algorithm starts with constructing a 1-NN classi�er from dataset
containing all minority class instances and a single, randomly drawn, majority
class instance. Next, it appends misclassi�ed instances from the set of remaining
ones and removes borderline and noisy instances using Tomek links. An improve-
ment of the OSS was proposed in [15]. The proposed Neighbouring Cleaning Rule
(NCR) algorithm is similar to OSS, except that to identify uninformative and
noisy data the edited nearest-neighbor rule is used instead of the TL.

Undersampling approach for learning Naïve Bayes classi�ers for mining im-
balanced datasets (NBU) was presented in [1].

In the recent years several undersampling algorithms using clustering have
been proposed. One of the �rst was the algorithm Fast-CBUS proposed by [19].
The idea was to group majority instances from the training set into clusters.
A separate classi�er is then trained for each cluster. An unlabeled instance is
classi�ed as the majority class if it does not �t into any of the clusters. Otherwise,
separate classi�ers induced earlier on are used to return the classi�cation results,
and the results are weighted by the inverse-distance from the clusters.

Well performing Clustering-based undersampling (CBU) was proposed in
[17]. The authors introduce two undersampling strategies aiming at reducing
the number of instances in the majority class to balance the training dataset.
The idea is to partition majority class instances into clusters. The number of
clusters is set to the number of instances in the minority class. The �rst strategy
is to use cluster centroids as the majority class representation, while the second
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strategy uses their nearest neighbors instead. During the learning phase the
AdaBoost with C4.5 ensemble classi�er was induced.

Combining a clustering-based undersampling based with instance selection
was the idea of [22]. The cluster based instance selection (CBIS) uses two com-
ponents. The �rst, groups instances from the majority class into clusters, and
the second �lters out unrepresentative ones from each cluster. For clustering the
a�nity propagation (AP) algorithm proposed in [9] is used and for instance se-
lection, either a genetic algorithm, or IB3, or DROP3 can be used (for instance
selection algorithms see [25]).

An e�ective approach to mining imbalanced datasets is using the ensemble
learning techniques. The idea is to combine several base-learners into ensembles
of classi�ers. One of the �rst was the ensemble oversampling algorithm named
SMOTEBoost, proposed in [4].

Combining undersampling and oversampling techniques in an ensemble learner
was proposed in [23]. The learner known as UnderBagging and OverBagging
(UOBag) works as follows: In UnderBagging, several subsets of instances are
created by undersampling majority class randomly to construct classi�ers. In a
similar way, OverBagging creates subsets of instances by oversampling minority
classes randomly. When a new instance arrives the majority vote decides on class
prediction.

Ensemble classi�er for imbalanced data based on feature space partitioning
and hybrid metaheuristics (AdaSSGACE) was proposed in [18].

3 GEP-NB classi�er

3.1 General idea of the GEP-NB

The proposed GEP-NB classi�er is based on the oversampling technique. It com-
bines two learning methods � Gene Expression Programming and Naïve Bayes
classi�er which are used to produce a collective learner responsible for the �nal
prediction. GEP-NB can be used for solving binary classi�cation problems. At
the pre-processing stage a simple mechanism for generating a synthetic minority
class examples and balancing the training set is used. For balancing purposes,
available minority class examples from the training set are supplemented by some
synthetic minority class examples to produce an expanded minority class (EMC)
training dataset consisting of original plus synthetic examples. During the �rst
phase of constructing the EMC dataset, original minority examples are randomly
replicated and attached to the current EMC. The number of minority class in-
stances drawn in such a way, denoted as Ms, is set by the user. Each instance
from the minority class can be drawn many times. The number of replicated
minority instances plus the original set of minority instances in the training set
should exceed the number of majority instances in the training set. The size of
the EMC is controlled by the parameter Ms. All replicated minority instances
are subject to mutation.

For each replicated instance, the mutation procedure starts with randomly
selecting (based on the uniform distribution) subset of features (without class
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labels), which will undergo a mutation. Selected features are modi�ed accord-
ing to the following heuristic rules: Boolean values are reversed, integer values
are changed by randomly modifying (adding or subtracting) x percent of their
value, and taking the integer part of the result, real values are changed by ran-
domly adding or subtracting x percent of their value, where x is a parameter,
set by the user. The idea is to produce some synthetic minority class instances
constructed from the original minority class samples using the proposed random
mutation procedure. The mutation scale is controlled by the parameter x, and
the quality of thus produced synthetic samples is controlled by the subsequent
selection procedures used for achieving a balance between minority and majority
classes. In numerous applications including evolutionary computations, genetic
programming, and population-based meta-heuristics, mutation procedures are
used as means for improving diversi�cation of solutions, assuring better conver-
gence, and helping to escape from local optima. In our case, the role of mutation
is to diversify synthetic samples and still keeping them somehow similar to orig-
inal minority instances. To avoid the negative in�uence of the outliers and to
keep samples fairly uniformly distributed we propose two specialized selection
procedures. Our approach has been inspired by population-based techniques that
have proven e�ective for solving a variety of di�cult problems.

Next, two genes g1 and g2 are evolved using Gene Expression Programming.
Both learners have the form of expression trees induced under the criterion of
geometric mean (G) value which should be maximized. The choice of geometric
mean as the main criterion is motivated by the fact that G is one of the most
often used metrics for evaluating the performance of learners designed for mining
imbalanced datasets. Besides, the value of G is closely correlated with values of
other metrics commonly used in the case of imbalanced datasets mining. The
learners g1 and g2 di�er by applying in each case a dedicated selection procedure
for reducing the EMC to balance minority and majority datasets:

� In the case of g1, the centroid of the EMC is identi�ed, and the Euclidean
distance between the centroid and each of the instances in the EMC is calcu-
lated. At this point we apply an instance reduction procedure to obtain the
reduced EMC with fairly uniform distribution of instances in the solution
space as shown in Fig. 2. Reduction aims at balancing majority and minority
classes.

� In the case of g2, the centroid of the majority class is identi�ed, and the
distance between this centroid and each of the instances in the EMC is
calculated. At this point we apply an instance reduction procedure to obtain
the reduced EMC by discarding instances that are close to the centroid of
the majority class as shown in Fig. 3, until majority and minority classes
become balanced.

At the learning stage, classi�ers g1 and g2, and a Naïve Bayes classi�er play
the role of base learners. Naïve Bayes learner is induced using a subset of the
training set involving instances for which predictions produced by g1 and g2 have
di�ered. The above learners are expected to maximize the value of the respective
geometric mean. Classi�ers produced by GEP have the form of expression trees.
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When classifying instances belonging to the test set, if for an instance the class
prediction by g1 agrees with that of g2, their decision is �nal. Otherwise, the
�nal predictive decision is made by the Naïve Bayes classi�er. An example of
an expression tree, a formal description of the approach and its computational
complexity analysis is given in the next subsections.

3.2 Formal description of the approach

Gene Expression Programming (GEP), introduced by Ferreira [8] is a meta-
heuristic which can be used in several areas, classi�cation included. It combines
the idea of genetic algorithms and genetic programming and makes use of a popu-
lation of genes. Each gene is a linear structure divided in two parts. The �rst part,
head, contains functions and terminals while the second part, tail, contains only
terminals. For this study terminals are of type (oper, attr, const), where the value
of const is in the range of attribute attr and oper is a relational operator from
{<,≤, >,≥,=, 6=}. Functions are from the set {AND,OR,NOT,XOR,NOR}.
For a �xed instance x from the dataset, the value g(x) of a gene g is boolean
and thus a gene can be treated as a binary classi�er.

Learning the best gene classi�er is an iterative process which starts with
a random population of genes. In each iteration the population is subjected
to operations such as: mutation, root transposition, transposition of insertion
sequence, 1-point and 2-point recombination. Each operation is performed with
a probability which is a parameter of the process. More details on applying GEP
can be found in [12].

Considering our hybrid classi�er, the �rst step is to oversample the minority
class by mutating random rows, as described in Fig. 1. The mutation of an

Require: data from minority class MinC, parameter Ms
Ensure: expanded minority class EMC of size Ms.
1: EMC=∅
2: for i = 0 to Ms do
3: draw random data row rw from MinC
4: draw random subset AT of attributes
5: for all at ∈ AT do

6: mutate rw(at) to r̄w(at) applying (1)
7: end for

8: add r̄w to EMC
9: end for

10: return EMC

Fig. 1. Oversampling to generate expanded minority class
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attribute is de�ned as:

r̄w(at) =

1− at if at boolean
(int)(rand(at ∗ (+/− (1 + x))) if at integer
rand(at ∗ (+/− (1 + x))) otherwise

(1)

In the next step one of two di�erent selection procedures is applied to EMC
to balance majority and minority sets. The procedures are given in Fig. 2 and
Fig. 3, respectively. Finally, the algorithm shown in Fig. 4 is applied to learn
the classi�er, test it and calculate entries in confusion matrix and the respective
performance measures.

Require: expanded minority class EMC , data from majority class MajC
Ensure: balanced dataset
1: calculate centroid CN of MajC
2: for all x ∈EMC do

3: calculate dist(x,CN)
4: end for

5: discard from EMC instances closest to CN to balance with MajC
6: return EMC ∪ MajC

Fig. 2. Instance reduction with equal distribution

Require: expanded minority class EMC, data from majority class MajC
Ensure: balanced data set.
1: calculate centroid CN of EMC
2: de�ne quartiles for {dist(x,CN) x ∈ EMC}
3: for i = 1, 2, 3, 4 do

4: let ni=number of elements in quartile i
5: Qi = ni/(n1 + n2 + n3 + n4)
6: end for

7: repeat
8: t=random
9: let (t > Qi−1 ∧ (t ≤ Qi))
10: discard random instance from quartile i
11: until EMC and MajC are balanced
12: return EMC ∪ MajC

Fig. 3. Instance reduction with centroids

As far as computational complexity is concerned, for Fig. 1 it is O(|EMC|),
where EMC is the expanded minority class. For Fig. 2 and Fig. 3 it isO(|EMC|2),
and �nally, for Fig. 4 it is bounded by the complexity of 2 and the complexity
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Require: minority class MinC, majority class MajC, testing data Test
Ensure: measures of classi�cation quality
1: use algorithm from Fig.1 to expand minority class MinC to extended minority class

EMC
2: use algorithm from Fig. 2 to generate balanced training set Train1
3: generate best possible gene g1 with Train1
4: use algorithm from Fig. 3 to generate balanced training set Train2
5: generate best possible gene g2 with Train2
6: for all (x, c) ∈ Test do
7: calculate g1(x) = v1 and g2(x) = v2
8: if v1 = v2 then

9: class = v1
10: else

11: apply Naïve Bayes classi�er to x to de�ne class
12: end if

13: compare class with c and modify TP , FN , FP , TN respectively
14: end for

15: calculate quality measures from TP, TN, FP, FN
16: return quality measures

Fig. 4. Learning best genes and testing

of learning the best gene which is O(nIt×popSize×|dataset|), where nIt is the
number of iterations in GEP, popSize is the population size and |dataset| is the
size of the dataset.

4 Computational experiment

To validate the proposed approach we have carried out an extensive compu-
tational experiment. It has covered 100 of the imbalanced datasets available in
KEEL Dataset Repository (https://sci2s.ugr.es/keel/imbalanced.php). Datasets
originate from [6] and [7]. Full information about the above datasets including
dataset names, number of instances, number of features and value of the imbal-
anced ratio can be found in the KEEL Dataset Repository.

In the experiment we have applied 5-folds cross validation procedure which
has been repeated 10 times. All the reported values are averages from the above
scheme. Geometric Mean (G) and Area Under the ROC Curve (AUC) were
selected as performance metrics.

GEP-NB has been run with the following settings, identical for all considered
datasets:

� GEP population size: 100
� Number of iterations in GEP: 100
� Selection rule: tournament from the pair
� Mutation probability: pm = 0.5
� Root Insertion Sequence Transposition probability: pris = 0.2
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� Insertion Sequence probability: is = 0.2
� 1-point recombination probability: pr1 = 0.2
� 2-points recombination probability: pr2 = 0.2
� Size of the EMC: twice the number of majority instances in the training set
� The value of x = 5%.

5 Comparative analysis

To evaluate the proposed approach several comparisons with the state-of-the-art
algorithms for mining imbalanced datasets have been carried out. Table 1 shows
average geometric mean (G) obtained using the following learners: Naïve Bayes
Undersampling (NBU), Edited Nearest Neighbors (ENN), Neighbouring Clean-
ing Rule (NCR), One Side Selection (OSS), Repeated Edited Nearest Neigh-
bors (RENN), Random Undersampling (RUS), Synthetic Minority Oversampling
Technique (SMOTE), Tomek Links (TL), the proposed oversampling scheme
denoted Population-based Oversampling (PBO), and GEP-NB proposed in this
paper. In all cases values of the respective metric have been calculated as an
average from several runs of the 5-cross-validation scheme. Results for NBU,
ENN, NCR, OSS, RENN, RUS, SMOTE and TL are taken from [1]. In all of
the above cases, as well as in the case of PBO, �nal results were obtained using
Naïve Bayes classi�er. To determine whether there are any signi�cant di�er-
ences among results from Table 1, produced by di�erent classi�ers we used the
Friedman ANOVA by ranks test. The null hypothesis state that there are no
such di�erences. With Friedman statistics equal to 75, 39 and p-value equal to
0.00000 the null hypothesis should be rejected at the signi�cance level of 0.05.
However, the Kendall concordance coe�cient expressing the simultaneous asso-
ciation (relatedness) between the considered samples, with the value of 0.1948
tells that there is a limited degree of relatedness between the considered samples.

Another comparison involved GEP-NB and the following ensemble learners:
Random Undersampling with Boosting (RUSBoost), ensemble classi�er based on
feature space partitioning with hybrid metaheuristics (AdaSSGACE) using KNN
and SVM base classi�ers, and Underbagging and Overbagging Ensemble Learner
(UOBag). The performance metric used in the comparison is the area under the
ROC curve (AUC). In all cases values of the respective metric have been calcu-
lated as an average from several runs of the 5-cross-validation scheme. Results for
RUSBoost, AdaSSGACE and UOBag are taken from [18]. The respective results
are shown in Table 2. Table 3 shows results obtained by GEP-NB, clustering
based undersampling (CBU) proposed in [17] and two versions of the ensemble
classi�er proposed in [22], and known as undersampling by combining clustering
analysis and instance selection (CBIS). Both version of this algorithm use clus-
tering by passing messages between data points technique [9] and IB3 instance
selection algorithm [25]. First version uses boosting for constructing ensembles,
and the second one uses bagging for the same purpose. All results have been
obtained using the 5-CV scheme. Results for CBU and CBIS are taken from the
original sources. In all cases the performance metric is the area under the ROC
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Table 1. Comparison of the average geometric mean (G) values obtained by the ana-
lyzed classi�ers.

Dataset NBU ENN NCR 0SS RENN RUS SMOTE TL PBO GEP-NB

abalone19 0,659 0,695 0,695 0,695 0,695 0,708 0,679 0,694 0,713 0,746

dermatology6 0,988 0,966 0,966 0,966 0,879 0,966 0,975 0,966 0,997 0,999

ecoli-0-1-4-6-VS-5 0,880 0,858 0,858 0,853 0,858 0,861 0,862 0,858 0,934 0,949

ecoli-0-1-4-7-VS-2-3-5-6 0,960 0,922 0,924 0,926 0,915 0,908 0,927 0,925 0,860 0,875
ecoli-0-1-4-7-VS-5-6 0,958 0,948 0,948 0,945 0,948 0,826 0,943 0,949 0,953 0,928
ecoli-0-2-3-4-vs-5 0,900 0,856 0,858 0,869 0,856 0,816 0,874 0,863 0,912 0,957

ecoli-0-3-4-6-vs-5 0,922 0,849 0,850 0,853 0,849 0,766 0,854 0,849 0,879 0,951

ecoli-0-3-4-7-vs-5-6 0,941 0,925 0,925 0,919 0,925 0,928 0,906 0,925 0,911 0,920
ecoli-0-3-4-vs-5 0,894 0,835 0,844 0,860 0,835 0,750 0,860 0,844 0,908 0,927

ecoli-0-4-6-vs-5 0,872 0,846 0,846 0,853 0,846 0,848 0,857 0,846 0,917 0,949

ecoli-0-6-7-vs-5 0,915 0,874 0,879 0,871 0,874 0,838 0,883 0,883 0,914 0,950

ecoli1 0,885 0,850 0,852 0,839 0,853 0,872 0,842 0,848 0,892 0,931

ecoli2 0,941 0,928 0,929 0,928 0,927 0,921 0,942 0,928 0,845 0,939
ecoli3 0,894 0,890 0,892 0,920 0,873 0,923 0,908 0,907 0,857 0,924

ecoli4 0,950 0,916 0,916 0,920 0,916 0,916 0,934 0,917 0,879 0,982

glass-0-1-4-6-vs-2 0,720 0,685 0,690 0,680 0,699 0,618 0,703 0,696 0,702 0,737

glass0 0,826 0,771 0,800 0,810 0,755 0,800 0,793 0,804 0,799 0,875

glass1 0,660 0,663 0,662 0,669 0,702 0,702 0,637 0,656 0,678 0,761

glass4 0,830 0,723 0,726 0,714 0,723 0,760 0,752 0,728 0,766 0,969

glass6 0,864 0,854 0,854 0,825 0,888 0,855 0,827 0,856 0,869 0,971

haberman 0,656 0,670 0,676 0,658 0,671 0,611 0,645 0,657 0,712 0,731

iris0 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

new-throid1 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0,945 0,974
new-thyroid2 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0,966 0,978
page-blocks-1-3-vs-4 0,992 0,902 0,908 0,908 0,902 0,902 0,909 0,909 0,913 0,999

page-blocks0 0,954 0,936 0,935 0,928 0,937 0,935 0,932 0,932 0,905 0,893
pima 0,815 0,799 0,809 0,815 0,789 0,814 0,815 0,813 0,814 0,748
poker-8-vs-6 0,531 0,437 0,439 0,427 0,437 0,456 0,500 0,577 0,588 0,801

segment0 0,987 0,982 0,982 0,982 0,982 0,982 0,980 0,982 0,981 0,984
vehicle0 0,904 0,806 0,805 0,823 0,801 0,809 0,820 0,811 0,834 0,901
vehicle1 0,740 0,709 0,713 0,717 0,708 0,719 0,717 0,713 0,726 0,754

vehicle2 0,920 0,861 0,859 0,850 0,857 0,834 0,849 0,857 0,789 0,926

vehicle3 0,762 0,701 0,700 0,698 0,700 0,697 0,699 0,698 0,798 0,926

winequality-red-4 0,694 0,659 0,653 0,651 0,660 0,626 0,653 0,650 0,616 0,679
winequality-red-8-vs-6-7 0,695 0,713 0,717 0,669 0,721 0,674 0,651 0,713 0,674 0,815

wisconsin 0,978 0,975 0,977 0,993 0,974 0,983 0,983 0,982 0,979 0,973
yeast-0-2-5-6-vs-3-7-8-9 0,816 0,761 0,762 0,762 0,764 0,742 0,755 0,760 0,776 0,848

yeast-0-2-5-7-9-vs-3-6-8 0,932 0,916 0,916 0,888 0,916 0,907 0,816 0,915 0,923 0,939

yeast-0-3-5-9-vs-7-8 0,721 0,695 0,690 0,712 0,680 0,713 0,731 0,698 0,698 0,727

yeast-1-vs-7 0,801 0,802 0,800 0,800 0,805 0,792 0,776 0,800 0,703 0,737
yeast-2-vs-4 0,864 0,833 0,835 0,833 0,831 0,822 0,834 0,839 0,837 0,956

yeast-2-vs-8 0,838 0,835 0,836 0,828 0,835 0,850 0,793 0,836 0,818 0,833
yeast5 0,989 0,987 0,986 0,986 0,987 0,976 0,982 0,986 0,935 0,978
Average 0,862 0,833 0,835 0,834 0,832 0,824 0,832 0,835 0,840 0,892
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Table 2. Comparison of the average geometric mean (G) values obtained by the ana-
lyzed classi�ers.

Dataset GEP-NB RUSBoost AdaSSGACEKNN.40 AdaSSGACESVM.40 UOBag

ecoli1 0,933 0,884 0,890 0,872 0,876
ecoli3 0,927 0,840 0,864 0,785 0,886
iris0 1,000 0,990 0,999 0,841 0,970
page-blocks0 0,917 0,956 0,931 0,751 0,953
pima 0,751 0,725 0,738 0,589 0,730
vehicle1 0,757 0,786 0,778 0,651 0,745
yeast1 0,722 0,701 0,711 0,688 0,720
yeast3 0,945 0,919 0,897 0,891 0,919
glass1 0,772 0,780 0,750 0,639 0,739
glass6 0,971 0,921 0,903 0,641 0,901
glass-0-1-6_vs_2 0,773 0,700 0,708 0,611 0,629
ecoli4 0,982 0,896 0,940 0,907 0,867
glass-0-1-6_vs_5 0,960 0,954 0,867 0,733 0,963

glass5 0,966 0,949 0,804 0,675 0,988

dermatology6 0,999 0,966 0,966 0,749 0,938
shuttle-6_vs_2-3 1,000 0,902 0,965 0,843 0,948
poker-9_vs_7 0,886 0,590 0,740 0,636 0,556
yeast-2_vs_8 0,840 0,747 0,801 0,737 0,778
yeast4 0,867 0,827 0,799 0,509 0,763
led7digit-0-2-4-5-6-7-8-9_vs_1 0,917 0,894 0,856 0,785 0,881
ecoli-0-1-3-7_vs_2-6 0,959 0,896 0,848 0,588 0,867
winequality-red-8_vs_6 0,827 0,815 0,589 0,528 0,700
winequality-white-9_vs_4 0,914 0,893 0,645 0,576 0,714
yeast6 0,914 0,851 0,875 0,515 0,814
poker-8-9_vs_6 0,835 0,915 0,623 0,557 0,534
winequality-white-3-9_vs_5 0,683 0,674 0,561 0,531 0,576
shuttle-2_vs_5 1,000 1,000 0,986 0,672 1,000

winequality-red-3_vs_5 0,848 0,644 0,608 0,580 0,615
poker-8-9_vs_5 0,616 0,547 0,631 0,557 0,618
poker-8_vs_6 0,817 0,915 0,623 0,469 0,534
Average 0,877 0,836 0,797 0,670 0,791

Table 3. Comparison of the area under the ROC curve obtained by CBU, CBIS and
GEP-NB classi�ers

Dataset CBU CBIS GEP-NB

AP+IB3boost AP+IB3boost

Abalone9-18 0,831 0,849 0,894 0,808

Abalone19 0,728 0,624 0,617 0,771

Ecoli-0-vs-1 0,982 0,975 0,982 0,993

Ecoli-0-1-3-7-vs-2-6 0,804 0,877 0,879 0,959

Ecoli1 0,927 0,958 0,957 0,933

Glass0 0,873 0,888 0,885 0,876

Glass-0-1-2-3-vs-4-5-6 0,970 0,980 0,966 0,961

Glass-0-1-6-vs-2 0,790 0,775 0,713 0,773

Glass-0-1-6-vs-5 0,964 0,894 0,987 0,960

Glass1 0,824 0,812 0,847 0,772

Glass2 0,760 0,741 0,766 0,822

Glass4 0,853 0,944 0,971 0,970

Glass5 0,949 0,994 0,994 0,966

Glass6 0,905 0,951 0,934 0,971

Haberman 0,603 0,646 0,648 0,737

Iris0 0,990 0,990 0,990 1,000

New-thyroid1 0,973 0,979 0,997 0,975

New-thyroid2 0,924 0,976 0,994 0,978

Page-blocks0 0,986 0,987 0,987 0,917

Page-blocks-1-3-vs-2 0,992 0,998 0,997 0,999

Pima 0,758 0,771 0,805 0,751

Segment0 0,996 0,999 0,993 0,984

Shuttle-0-vs-4 1,000 1,000 1,000 1,000

Shuttle-2-vs-4 0,988 1,000 1,000 1,000

Yeast-1-2-8-9-vs7 0,692 0,818 0,775 0,661

Yeast-1-4-5-8-vs7 0,627 0,777 0,605 0,709

Yeast4 0,874 0,857 0,914 0,867

Yeast5 0,987 0,967 0,970 0,978

Yeast6 0,909 0,881 0,884 0,914

Average 0,878 0,893 0,895 0,897
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curve (AUC). To determine whether there are any signi�cant di�erences among
results from Table 3, we again used the Friedman ANOVA by ranks test. The
null hypothesis state that there are no such di�erences. With Friedman statis-
tics equal to 7.301 and p-value equal to 0.0629 the null hypothesis should not
be rejected at the signi�cance level of 0.05. The Kendall concordance coe�cient
expressing the simultaneous association (relatedness) between the considered
samples, with the value of 0.0811 tells that there is a limited degree of related-
ness between the considered samples. It is worth noting that the above �ndings
are not contradictory to the fact that the average performance of GEP-NB using
the AUC metric and calculated over the sample of 29 datasets as shown in Table
3, is better than the performance of the remaining learners.

6 Conclusion

The paper contributes by proposing a new classi�er for mining imbalanced
datasets. The classi�er named GEP-NB, has the following main features:

� At the preprocessing stage it uses an original oversampling method to balance
minority and majority sets of instances. The approach is based on producing
synthetic minority class instances by replication, mutation, and selection of
instances from the original set of minority instances.

� At the learning stage a semi-ensemble strategy is used. It consists of devel-
oping two complex expression trees using the Gene Expression Programming
paradigm. Both are supported by the Naïve Bayes learner used in the case
when the class prediction from both genes di�ers.

An extensive computational experiment has shown that the performance of the
proposed learner is competitive. Comparison with the state of the art single
learners for mining imbalanced datasets proves that GEP-NB outperforms all of
them. Comparison with the state of the art ensemble learners shows that GEP-
NB either outperforms them or is at least as good as the best of the considered
ensemble classi�ers. The above �ndings allow to state that GEP-NB is a worthy
addition to the family of classi�ers dedicated to mining imbalanced dataset.

Competitive performance of GEP-NB can be attributed to a synergetic ef-
fect produced by three following factors � learners, oversampling procedure, and
semi-ensemble architecture. Ensemble components including GEP and Naïve
Bayes learners are themselves good performers, which have been con�rmed by
numerous studies. The proposed oversampling procedure has been constructed
using the population-based paradigm where mutation of the population mem-
bers and selection of better-�tted individuals play a vital role in the search for
high-quality solutions. Finally, using the concept of semi ensemble learning with
three base classi�ers could mask some prediction errors. The main novelty and,
at the same time, the solution of the research problem tackled by the paper is
the integration of the above factors into a specialized learner producing good
quality predictions when mining imbalanced datasets.
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Future research will focus on extending the approach, possibly by integrating
oversampling and undersampling approaches for balancing minority and ma-
jority class instances with a view to increasing e�ectiveness of the approach.
Another direction of studies could bring some improvements in the process of
generating and selecting the synthetic minority instances.
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