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Abstract. The article presents a comparison of two statistical approaches
to the problem of image reconstruction from projections: the worldwide
known concept based on a discrete-to-discrete data model and our orig-
inal idea based on a continuous-to-continuous data model. Both recon-
struction approaches are formulated taking into account the statistical
properties of signals obtained by CT scanners. The main goal of this
strategy is significantly improving the quality of the reconstructed im-
ages, so allowing a reduction in the x-ray dose absorbed by a patient
during CT examinations. In the concept proposed by us, the reconstruc-
tion problem is formulated as a shift-invariant system. In consequence,
that significantly improves the quality of the subsequently reconstructed
images, and it allows to reduce the computational complexity compared
to the reference method. The performed by us experiments have shown
that our original reconstruction method outperforms the referential ap-
proach regarding the image quality obtained and the time of necessary
calculations.

Keywords: Iterative reconstruction algorithms · Computed tomogra-
phy · Statistical methods.

1 Introduction

1.1 Motivation

Although computed tomography was invented many years ago, it continues to
be a very appealing field of research. Every new generation of CT devices stim-
ulates the development of reconstruction algorithms adapted for the new de-
sign. Put simply, we can say that since the first design made by Godfrey New-
bold Hounsfield in 1971 all the most significant reconstruction algorithms have
used one of two basic approaches, depending on the signal processing methodol-
ogy used in them: these are analytical methods (continuous-to-continuous data
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model), especially those based on convolution and back-projection [1], and meth-
ods based on the strategy called the algebraic strategy (discrete-to-discrete data
model) [2]. It is worth underlining that apart from in the first scanner designed
by Hounsfield, the EMI Mark I, and the prospective use of the newest concepts
in reconstruction algorithms in high definition computed tomography (HDCT)
devices, all other CT designs have been equipped with analytical reconstruction
algorithms. The use of the algebraic method (ART - Algebraic Reconstruction
Technique) in the first historical CT apparatus was presumably because there
was no alternative at the time. After this ”early mistake”, the next generation
of CT systems used only reconstruction algorithms based on analytical image
processing methods. The main reason for this was the huge size of the matri-
ces which appear in the algebraic reconstruction problem and the calculation
complexity of the reconstruction method based on this methodology that this
caused. The analytical (or transformation) methodology drastically simplifies
the number of calculations needed and so is more appealing. It has been proven
(e.g. [3]) that the frequency of cancerous diseases for patients who had had a
CT scan (at least one year after the scan) is about 24% higher than in the case
of patients who had not had the scan. Due to the enormous prevalence of CT
scans, any action aimed at reducing this impact are of fundamental importance,
assuming of course, the further existence of this popular, cheap and effective di-
agnostics technique. For these reasons, but also for both social and commercial
ones, manufacturers began a kind of competition to develop methods of reducing
the X-ray dose absorbed by patients. The seemingly obvious solution, to simply
reduce the radiation dose given during a scan, cannot be applied. This is be-
cause the required radiation dose is determined by the SNR, which defines the
image quality. Thus, if the image quality is to remain high, the radiation inten-
sity should stay at a defined level (which has a direct impact on the absorbed
radiation dose during the scan).

1.2 Contribution

It is possible to improve the resistance of tomographic images to the measure-
ment noise which occurs during image reconstruction by using appropriate sta-
tistical signal processing. This means that it is possible to decrease the radiation
intensity applied, and so decrease the dose absorbed by patients. Recently, some
commercial solutions of such systems have been developed, which perform re-
construction processing iteratively to decrease the noise in the images. These
systems take into consideration the probabilistic conditions present in the mea-
surement systems of CT scanners in order to limit the influence of noise on the
images obtained from the measurements. The most interesting approach, called
MBIR (Model-Based Iterative Reconstruction), is presented in such papers as
[4] [5], where a statistical model of the measurements is derived analytically,
and, based on this, a statistical iterative reconstruction algorithm is formulated.
The reconstruction problem formulated algebraically plays a crucial part in this
approach. Indeed, the algebraic approach to the image reconstruction from pro-
jections problem is being intensively explored once more. This is because of
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one obvious reason - the measurement noises in it can be modelled relatively
easily, because each measurement is considered separately. The reconstruction
idea presented in the above publications is based on the maximum likelihood
(ML) approach and a development of this concept - the maximum a posteriori
probability (MAP) estimation approach (the iterative coordinate descent (ICD)
algorithm described comprehensively in [6]) implements the MAP approach).
Consequently, in 2013, this development had its debut under its commercial
name Veo - CT Model-Based Iterative Reconstruction. This application of the
algebraic reconstruction method, however, presents some significant technical
difficulties in its practical realization, namely: the difficulty in establishing the
coefficients of the forward model for 3D spiral cone-beam scanners [7], [6]. The
huge number of these coefficients in this model means that it is impossible to
keep all of them in memory at the same time and the requirement for the si-
multaneous calculation of all voxels in the range of the reconstructed 3D im-
age make the reconstruction problem extremely complex. Although, there have
been attempts to decrease the calculation complexity of this approach, as pre-
sented for example in the paper [8], they have, as yet, only met with limited
results. Moreover, this system uses a reconstruction problem model that has
been shown to be extremely ill-conditioned. One can say that there are many
solutions on the market in this area, but they are still insufficient when it comes
to the limiting the radiation dose. Therefore, there is still room for improvement
of such systems. It would be interesting to formulate a statistical reconstruc-
tion method which would take into consideration the statistical conditions of
the measurement physics, as in the ICD algorithm, thereby eliminating most
of the disadvantages of the algebraic scheme of signal processing methodology.
We could avoid the above mentioned difficulties connected with using an alge-
braic methodology by using an analytical strategy for the reconstructed image
processing. In previous papers, we have shown how to formulate the analytical
reconstruction problem consistent with the ML methodology for scanners with
parallel geometry [9], [10], for fan-beams [11], and finally we have proposed a
scheme of reconstruction method for the spiral cone-beam scanner [12]. Our ap-
proach has some significant advantages compared with algebraic methodology.
Firstly, in our method, we establish certain coefficients, but this is performed in
a much easier way than in comparable methods. Secondly, we perform the recon-
struction process in only one plane in 2D space, greatly simplifying the problem.
In this way, the reconstruction process can be performed for every cross-section
image separately. After this, it is possible to reconstruct the whole 3D volume
image from the set of previously reconstructed 2D images. And finally, because
of the analytical methodology of the reconstruction process, we can perform
most of the computationally expensive operations in the frequency domain (2D
convolutions). Because it is a very much less computationally demanding ap-
proach, by using FFT, we make our reconstruction method independent of the
dimensions of the reconstructed image, to an acceptable degree. This approach
also outperforms the algebraic method regarding the better condition number
at the level of problem formulation. This makes our method really competitive
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in terms of its resistance to the influence of measurement noise and errors in
the forward model. The main motivation for this paper is to present a compari-
son between these two model-based approaches to the statistical reconstruction
problem. In particular, we will present considerations and computer simulations
that correspond with the optimization of the computational complexity in the
case of the continuous-to-continuous method designed by us. We will also show
how this optimization achieved by problem reformulation can impact the time
of calculations obtained under actual conditions.

2 Statistical Reconstruction Approaches

We below present two approaches that can be directly applied to parallel beam
tomography, but it is possible in an easy way to adapt them for a majority of
all existing geometries of the CT scanners.

Let function µ(x, y) denote the unknown image representing a cross-section
of an examined object (in medicine, a human body). Image µ(x, y) will be cal-
culated using projections obtained by using the Radon transform. A diagram of
a single projection measurement is depicted in Fig. 1.

u

s

x

y

a

p s( , )a

X-ray

Fig. 1. The geometry of the projection system

The function p (s, α) is the result of a measurement carried out at a distance
s from the origin when a projection is made at a specific angle α. This is called
the Radon transform and is written mathematically as

p (s, α) =

+∞∫
−∞

+∞∫
−∞

µ(x, y) · δ (xcosα+ ysinα− s) dxdy. (1)
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Both reconstruction approaches can only make use of projections obtained at
certain angles and measured only at particular points on the screen. Therefore,
beams of x-rays reaches the individual detectors at points l = −L/2, . . . , L/2,
where L is a number of detectors placed on a screen. Values sl = l ·∆s denote
the distances on the screen between each ray and the origin, and ∆s denotes
the interval between detectors. In turn, parameters αψ denote discrete values
of the projection angles indexed by the variable ψ, where ψ = 0, . . . , Ψ − 1,
where Ψ is the number of projections. Subsequent projections are carried out
after a rotation by ∆α. Following a discrete nature of available measurements,
we will consider the discrete form of the image µ (i, j) as well, where i = 1, . . . , I,
j = 1, . . . , I.

2.1 A statistical approach based on the discrete-to-discrete data
model

First, we consider a referential approach to the image reconstruction problem,
in which a model-based iterative reconstruction method is based on a discrete-
to-discrete data model. A forward model (a system of linear equations) of this
approach can be presented as follows:

p = Aµ, (2)

where: p = [pm] is the projection vector with m = 1, . . . , L · Ψ; A = [amn]
is a system matrix with dimensions 1, . . . L · Ψ × 1, . . . I2; µ = [µn] is a vector
representing a reconstructed image with dimension n = 1, . . . , I2. Practically,
the elements amn can be interpreted as the contribution of a given image block
(pixel) with parameters n to the formation of the projection value pm, measured
at the screen.

Defined above forward model was applied to formulate, according to sta-
tistical considerations (see e.g. [4] or [5]), the following iterative reconstruction
method which is based on Maximum Likelihood estimation of the reconstructed
image:

µ0 = arg min
µ

(
1

2
(p−Aµ)

T
D (p−Aµ)

)
, (3)

where D is a diagonal matrix:

D =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dL·Ψ

 =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λL·Ψ

 , (4)

wherin (see [13]):

dm ∼=
1

σpm
, (5)
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where σpm are the variances of the projection measurements pm.
It is worth noting that formula (3) represents a Weighted Least Squares

(WLS) problem and it can be solved using any gradient descent method. How-
ever, the huge number of amn coefficients in this model means that it is im-
possible to keep all of them in memory at the same time and the requirement
for the simultaneous calculation of all voxels in the range of the reconstructed
3D image make the reconstruction problem extremely complex. Moreover, the
computational complexity of the problem is approximately proportional to J2,
where J is the number of voxels in the reconstructed 3D image, and the itera-
tive reconstruction procedure based on this conception necessitates simultaneous
calculations for all the voxels in the range of this image. For a 3D geometry of
the scanner (e.g. spiral cone-beam geometry), it means that the reconstruction
for all J = I2 × Z voxels is performed simultaneously, where Z is a number
of examined cross-sections of a body. Therefore, the computational complexity
of this approach is evaluated as O

(
Z2I4

)
. The diagram of a basic form of this

reconstruction algorithm is depicted in Fig. 2.
It is well-known that the form of the ML methodology expressed by (3) is

ill-conditioned and, as described in the literature [5], is unstable in practice.
That is why regularizing a priori terms are standardly introduced into the loss
function. On the other hand, these additional terms cause an increase in the
calculation demands during the optimization process, and lead to smoothing
of the reconstructed image. It would be very appealing to use a reconstruction
methodology based on a pure ML scheme, without any regularizing a priori term
and so avoid these instabilities of the reconstruction process and the smoothing
effect. It was proposed a modification of the loss function (3), in the following
manner:

µ0 = arg min
µ

(
1

2
(p−Aµ)

T
D (p−Aµ)

)
+ βf (µ) , (6)

where f (µ) is some scalar regularization term, whose introduction has the aim of
penalizing local differences between elements of the reconstructed image; β is a
constant coefficient. This regularization term may take different forms, however,
an interesting approach to this method is the total variation (TV) regularization
[14].

It is possible to implement this approach in practice, mainly thanks to the
attempts to decrease the calculation complexity of this approach (for details of
the ICD algorithm see [8]). Consequently, in 2013, this development had its debut
under its commercial name Veo - CT Model-Based Iterative Reconstruction (GE
Medical Systems).

2.2 A statistical approach based on the continuous-to-continuous
data model

Our reconstruction method also is based on the well-known maximum-likelihood
(ML) estimation, where an optimization formula is consistent with the C-C data
model, as follows:
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Fig. 2. The diagram of the approach based on the D-D data model

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_55

https://dx.doi.org/10.1007/978-3-031-08754-7_55


8 R. Cierniak

µmin = arg min
µ

∫
x

∫
y

∫
x̄

∫
ȳ

µ (x̄, ȳ) · h∆x,∆ydx̄dȳ − µ̃ (x, y)

2

dxdy

 , (7)

where µ̃ (x, y) depicts an image obtained using a back-projection operation, the-
oretically in the following way:

µ̃ (x, y) u
2π∫
0

∞∫
−∞

p (s, α) intL (∆s) dβdα, (8)

wherein p (s, α) are measurements carried out using a scanner, and the coeffi-
cients h∆i,∆j can be precalculated according to the following relation:

h∆x,∆y =

2π∫
0

int (∆x cosα+∆y sinα) dα, (9)

and int (∆s) is a linear interpolation function.
According to the originally formulated by us iterative approach to the recon-

struction problem, described by Eqs (7)-(9), it is possible to present a practical
model-based statistical method of image reconstruction, as follows:

µmin = arg min
µ

 I∑
i=1

J∑
j=1

∑
ī

∑
j̄

µ∗
(
xī, yj̄

)
· h∆i,∆j − µ̃ (xi, yj)

2
 , (10)

and µ̃ (i, j) is an image obtained by way of a back-projection operation, in the
following way:

µ̃ (xi, yj) = ∆α

∑
θ

ṗ (sij , αψ) . (11)

It is necessary to use an interpolation to evaluate projections at points sij based
on the measured projections p (sl, αψ). We can obtain an approximations of these
projections as follows:

ṗ (sij , αψ) =
∑
l

p (sl, αψ) int (sij − l∆s) , (12)

where int (∆s) is the interpolation functions, i.e. in the simplest case, linear
interpolations:

int (s) =

{
1
∆s

(
1− |s|∆s

)
for |s| ≤ ∆s

0 for |s| ≥ ∆s

. (13)
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In turn, the coefficients h∆i,∆j are determined according to the following formula:

h∆i,∆j = ∆α

Ψ−1∑
ψ=0

int (∆i cosψ∆α +∆j sinψ∆α) , (14)

wherein int (∆s) is the same interpolation function as was used in the back-
projection operation.

Same as before, the optimization problem (10) can be solved using any gra-
dient descent method. Basically, in this case, the computational complexity of
this problem is approximately proportional to J2, where J = I2 is the number
of pixels in the reconstructed 2D image, where I is the image resolution, and
the iterative reconstruction procedure based on this conception necessitates si-
multaneous calculations for all the pixels in the reconstructed 2D image, despite
the geometry of a scanner. However, a shift-invariant system in the optimiza-
tion problem (10) means that it is possible to transpose the most demanding
computations into a frequency domain.

Therefore, it is necessary to transform two times a processed vector into a
frequency domain, decreasing the computational complexity of the convolution
from O

(
I4
)

to O
(
I2
)
. Of course, each FFT costs O

(
2log2I

2
)

operations, and

we have to invert this transform every time. In total, that gives O
(
8log24I2

)
operations per one iteration of the iterative reconstruction procedure (dimension
of the image has to be doubled for the FFT processing). Figure 3 depicts this
algorithm after discretization and implementation of the FFT that significantly
accelerates the calculations.

Actually, this statistical reconstruction method consists of two steps, namely:
a back-projection operation described by relation (8) and an iterative recon-
struction procedure according to formula (7). In this case, the back-projection
operation is not computationally demanding because there is no filtration during
this operation, and it has a marginal influence on the real reconstruction time.

Although we have to establish certain coefficients in our method, this can be
performed more easily than in a referential approach and the matrix containing
these coefficients has relatively small dimensions, thus allowing it to be precalcu-
lated. Moreover, these coefficients can be transformed into the frequency domain
and saved in memory in this form for further processing. In should be noted that
this system is much better conditioned than the WLS problem present in the
referential approach.

3 Experimental results

We divided our experiments into two phases: first, we will try to show that the
C-C data model gives better quality of the reconstructed images, and then, we
will perform original tomographic data to evaluate both approaches regarding
the time of calculations.
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Fig. 3. The diagram of the approach based on the C-C data model

In this phase of our experiments, we have adapted the FORBILD1, a math-
ematical phantom of the head. All the values of the attenuation coefficients
placed in the original model were divided by a factor 10−3 in order to facilitate
the calculations. This model was used to generate projections with noise with
a Poisson probability distribution. During the simulations, we fixed L = 1024
measurement points (detectors) on the screen. The number of projections was
chosen as Ψ = 3220 rotation angles per full-rotation and the size of the processed
image was fixed at I× I = 1024× 1024 pixels.

It was convenient to establish coefficients h∆i,∆j using relation (9) before
we started the reconstruction process and these coefficients were fixed for the
subsequent processing.

Having obtained the coefficients h∆i,∆j , we can start the actual reconstruc-
tion procedure and perform the back-projection operation using relationships
(8) to get a blurred image of the x-ray attenuation distribution in a given cross-
section of the investigated object. We must use the linear interpolation function.

Evaluating a reconstruction procedure based only on a view of the recon-
structed image is very subjective. For that reason the quality of the reconstructed
image has been evaluated by an error measure defined as follows

MSE =
1

I2

I∑
i=1

J∑
j=1

(
µ(t) (i, j)− µ (i, j)

)2

, (15)

1 http://www.imp.uni-erlangen.de/forbild/deutsch/results/head/head.html
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where: µ∗(t) (i, j) is the reconstructed image after t iterations and µ (i, j) is the
original image of the FORBILD phantom.

At this time, we have taken into account one form of regularization: the
total variation (TV) prior [14]. The result obtained are shown in Table 1 (for all
reconstructions, the starting image is a flat image µ∗0 = 0.005). For comparison,
the original phantom image (Table 1.B), the image reconstructed by a standard
FBP reconstruction method (Table 1.A) and by the referential ICD algorithm
(Table 1.C) are also presented.

Table 1. Views of the images: reconstructed image using the standard FBP method
with Shepp-Logan kernel (A); original image (B); reconstructed image using the D-D
method described in the paper [8] (after 15 iterations) (C); reconstructed image using
the C-C method described in this paper (after t = 103 iterations) (D).

Image Resolution Image Resolution
phantom phantom

A E
MSE = 4.31 · 10−9

B F
MSE = 3.37 · 10−9 MSE = 3.86 · 10−9

Experiments in the next phase were carried out using projections obtained
from a Somatom Definition AS+ scanner with parameters, as follows: refer-
ence tube potential at the level 120kVp, quality reference effective at the level
200mAs.
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The size of the reconstructed image was fixed at 512 × 512 pixels. A dis-
crete representation of the matrix h∆x,∆y was established in a computational
way before the reconstruction process was started. These coefficients were fixed
(transformed into the frequency domain) and used for the whole iterative recon-
struction procedure. A result of an FBP reconstruction method was chosen as
the starting point of the iterative reconstruction process.

A crucial parameter for the practical implementation of a reconstruction
method is the actual computation time of the reconstruction procedure. We have
implemented our iterative reconstruction procedure using some hardware con-
figurations, namely: a computer with 10 cores, (Intel i9-7900X BOX/3800MHz
processor), using different GPUs (see 3). It is worth noting that our iterative
procedure was implemented at assembler level. In Table 2, we show time result
for application which is working only on CPU which is develop in Assembler
(special vector registers AVX 512 used). In turn, in table 3, we present time
result for application which is working only on GPU accelerators. There are
compared those accelerators. It is worth noting that it is very stable time, be-
cause deviation is extremely small and that application is very susceptible to
parallelisation, because time for one iteration it is getting smaller with on more
CUDA Cores assembled in GPU Accelerator.

Table 2. Results of reconstruction on multi threading, i.e. CPU Intel i9-7900X (10-
cores, 20-treads).

Threads: 4 8 10 16 20
Avg. time 30000[ms] 63 724 33 571 29 836 30 532 27 905
Avg. time 20000[ms] 42 482 22 380 19 890 20 354 18 603

Avg. time 10000[ms]: 21 241 11 190 9 945 10 177 9 301
Time 1 iteration [ms]: 2,1241 1,1190 0,9945 1,0177 0,9301

HT effectiveness: - - - 0,9094 0,9352
Median for 30000: 63 694 33 542 29 800 30 566 27 854

Deviation std.: 135,69 117,32 217,58 193,88 391,76

Table 3. Results of reconstruction on different models of GPUs accelerator.

GPU: MSI GTX ASUS GTX nVidia
1050 1080 Ti Titan V

Avg. time 30000[ms] 2 562 175,10 49 699,71 28 858,40
Avg. time 20000[ms] 170 845,28 33 132,52 19 224,48
Avg. time 10000[ms]: 85 467,24 16 593,00 9 616,75

Time 1 iteration [ms]: 8,540583 1,656657 0,961947
Median for 30000: 256 229,55 49 703,68 28 861,24

Deviation std.: 0,160806 0,310476 0,010239
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According to an assessment of the quality of the obtained images by a radi-
ologist, 7000 iterations are enough to provide an acceptable image for medical
purposes. One can compare the results obtained by assessing the view of the
reconstructed image in Figure 4, where where the quarter-dose projections were
used.

Fig. 4. Obtained image (a case with relative small pathological change in the liver)
using quarter-dose projections with application of the statistical method presented in
this paper.

4 Conclusion

Comprehensive experiments have been performed, which prove that our recon-
struction method is relatively fast (thanks to the use of FFT algorithms) and
gives satisfactory results with suppressed noise. It should be noted that approx-
imately the same results were achieved for both hardware implementations: the
iterative reconstruction procedure takes less than 7s, mainly thanks to the use
of an FFT algorithm in the iterative reconstruction procedure and to the use
of the efficient programming techniques. These are rewarding results regarding
possibilities of the commercial Veo system (referential MBIR technique), where
reconstruction times range between 10 to 90 minutes depending on the number
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of reconstructed slices [15]. It means an unacceptable delay between data acqui-
sition and availability for interpretation for emergent indications. Additionally,
the hardware used by us is relatively cheap (about 5000 USD) compared to the
price of the equipment necessary for the referential solution. It should be em-
phasized that the designed by us statistical approach (formerly formulated for
CT scanner with parallel beam geometry) can be adapted for helical scanners
with various geometries, e.g. with cone-beams or with x-tube with flying focal
spot.
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