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Abstract. Third-generation nanopore sequencing technologies, along
with portable devices such as MinION Nanopore and Jetson Xavier NX,
allow performing cost-effective metagenomic analysis in a portable man-
ner. At the same time, we observe the growth of the serverless computing
paradigm that offers high scalability with limited maintenance overhead
for the underlying infrastructure. Recent advancements in serverless of-
ferings make it a viable choice for performing operations such as basecall-
ing. This paper aims to evaluate if a combination of edge and serverless
computing paradigms can be successfully used to perform the basecalling
process, with the focus on acceleration of offline edge-based processing
with serverless-based infrastructure. For the purposes of the experiments,
we proposed a workflow in which DNA sequence reads are processed si-
multaneously at the edge with Jetson Xavier NX and in the cloud with
AWS Lambda in different network conditions. The results of our experi-
ments show that with such a hybrid approach, we can reduce the process-
ing time and energy consumption of the basecalling process compared to
fully offline or fully online processing. We also believe that while so far,
the adoption of serverless computing for bioinformatic applications is
not high, the recent improvements to platforms such as AWS Lambda
make it a compelling choice for an increasing number of bioinformatics
workflows.

Keywords: nanopore sequencing, edge computing, edge analytics, bioin-
formatics, Jetson Xavier NX, cloud computing, metagenomics, serverless
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1 Introduction

In recent years, we have seen the fast growth of the popularity of third-generation
sequencing technologies. These technologies allow performing metagenomics anal-
ysis in a cost-effective manner, thanks to devices such as MinION Nanopore.
MinION Nanopore is a sequencing device released by Oxford Nanopore Tech-
nologies (ONT), which, due to its small dimensions, weight, and costs, enables
portable analysis in mobile laboratories, helping out with monitoring Ebola virus
outbreak in Kenya [19], Lassa virus outbreak in Nigeria [23], performing early
detection of plant viruses in Africa [9], or monitoring sewage [8]. It even has
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been used on International Space Station [11] or during an ice cap traverse ex-
peditions [15].

The use cases as listed above are taking advantage of edge computing paradigm[30],
which enables processing data closer to its source, reduces the amount of data
that needs to be sent to the cloud, and provides resilience in situations where
Internet connection is unreliable or even unavailable at times. However, the
metagenomics analysis at the edge is problematic due to the limited access to
computational power at edge devices. A lot of the popular bioinformatics tools
are written with multi-node clusters in mind, and they require significant com-
puting power to run processing successfully. Based on the official documentation
[4], the MinION device can produce up to 15 GB of data per day, which makes it
challenging to take advantage of cloud computing power in cases where network
connectivity is unstable, and network throughput is limited. Another challenge
in such field applications is access to a reliable power supply. Due to that, it is
essential to preserve energy and take advantage of techniques that allow main-
taining a sustainable ratio of computational power to energy consumption. In
our previous paper [17], we have determined that devices such as Jetson Xavier
NX can be successfully used for portable metagenomics. However, performing
such analysis in real-time is challenging if the experiments require increased ac-
curacy.

At the same time, we observe the growing popularity of the serverless com-
puting paradigm, which commercially started with the release of AWS Lambda
[22] in 2014. The serverless paradigm allows reducing infrastructure maintenance
in comparison to cloud servers or virtual machines while at the same time pro-
viding a highly scalable execution environment that supports parallel processing
very well. While mainly being adopted for use cases such as Web APIs, based on
our previous research [16], we can see that serverless computing is also gaining
popularity for bioinformatic workflows. In one of our recent works [18], we have
validated that a serverless-based solution can be successfully used for performing
basecalling of nanopore sequencing data.

This paper aims to evaluate if and how a combination of edge and server-
less computing paradigms can be successfully used for performing metagenomics
analysis and what benefits such a hybrid approach can offer compared to per-
forming the analysis in a fully offline edge or fully online serverless manner.
In particular, we focus on a use case where the fully offline edge basecalling
process is accelerated with serverless-based basecalling processing if available
network conditions allow for it. Throughout experiments, we aim to highlight
the potential reductions in processing time and energy consumption. We believe
that the low maintenance overhead and high scalability offered by the serverless
paradigm can make it a good fit for this particular use case. The main motiva-
tion behind the study is to evaluate how edge-based basecalling process can be
potentially speed up without sacrificing energy-efficiency and keeping in mind
the constraints of edge-based deployments.

The rest of the paper is organized as follows. In section 2, we review the
related works in the area. Section 3 describes the testing workflow and the en-
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vironment used for experiments. Section 4 focuses on the testing methodology
and the results of the performance experiments. Finally, section 5 provides a
summary and concludes the results of the paper.

2 Related Works

Portable metagenomics analysis has been gaining more interest in world research
and scientific literature in recent years. Oliva et al. [27] presented an overview and
benchmarks of bioinformatic tools that can be ported and used on an Android
smartphone in order to evaluate if regular smartphones are powerful enough
to support portable analytics. The authors considered 23 tools, but only 11 of
them were successfully ported to work on an Android device. The only base-
calling software that the authors managed to port was Nanocall [13], but the
paper does not include a benchmark of basecalling with Nanocall. This research
suggests that a new set of tools optimized for ARM architectures will be nec-
essary to support portable analytics on regular smartphones reliably. Another
example was presented by Grzesik et al. in [17], where the authors evaluated the
feasibility of using a device such as Jetson Xavier NX for performing basecalling
and classification operations in an edge computing manner. The authors devel-
oped a workflow based on Guppy basecaller and Kraken2 classification software,
and throughout their experiments, they determined that Jetson Xavier NX can
serve as an energy-effective and performant device that can be used for run-
ning metagenomic analysis in a portable manner. Yet another case of portable
metagenomics was presented by D’Agostino et al. [14]. The authors proposed hy-
brid edge-cloud architecture for performing cost-effective metagenomic analysis.
During the experiments, they evaluated a workflow that includes basecalling and
classification steps using Deepnano and Kraken software. As the edge platform,
they used Intel System-on-Chip boards. Based on the performed experiments,
the authors suggested that while it is possible to run metagenomic analysis
directly on selected devices, none supported the data processing in real-time.
Similar research has been performed by Merelli et al. [26], where the authors
described a fog computing architecture, based on low-powered portable devices,
aimed at performing metagenomic analysis. However, Merelli et al. focused on
energy consumption aspects and concluded that the system that would have to
support real-time analysis could not be powered by batteries and would require
multiple computing boards to process output from a single MinION device.

On the other hand, we also observe a growing interest in research related
to the use of serverless computing for bioinformatics applications. Grzesik et
al. [16] presented an overview of serverless techniques used for omics data anal-
ysis. The authors referred to multiple examples that consider using serverless
computing for bioinformatic workflows in their work. One of the cases they
mention is an API used for simulating the DNA sequencing data, proposed by
Aboukhalil [7]. That solution is based on the ”wgsim” tool for simulating se-
quence reads based on a provided reference genome. By taking advantage of
”biowasm,” the author managed to compile ”wgsim” to WebAssembly to suc-
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cessfully run it on Cloudflare Workers Unbound, which is a serverless platform.
Hung et al. [20] demonstrated how serverless computing could help with reduc-
ing computation time of RNA sequencing data analysis. In their application, the
authors proposed a three-step architecture with split, merge, and align steps.
They identified the merge step as the best one to be potentially parallelized
and accelerated with the serverless approach. During the merge step, the human
transcriptome reads are aligned by using the Burrows-Wheeler Aligner [25]. In
the tested case, they sharded data into 60 MB files which resulted in a work-
flow that employed over 1,700 serverless functions in parallel. Taking advantage
of such architecture reduced the total execution time of the workflow from 2.5
hours for a cloud server to 6 minutes when using serverless functions. Another
case where serverless computing allowed for reduced computing time is sBeacon
[21], a serverless implementation of the Beacon protocol, proposed and imple-
mented by The Commonwealth Scientific and Industrial Research Organization
(CSIRO). By taking advantage of AWS Lambda and AWS S3, CSIRO managed
to reduce the time required to upload new genomes into the database from 33
hours when using a cloud server to only 22 seconds. The authors also mentioned
that the selected architecture improves data privacy and allows reducing the
costs of the infrastructure. CSIRO is one of the leading organizations involved
in adopting serverless for bioinformatic workflows. In addition to sBeacon, it also
proposed Serverless Variant Effect Predictor (sVEP) used for genomic variants
prediction. Thanks to parallelization of the workflow being enabled by the use of
AWS Lambda, the authors estimated that sVEP is 99% faster than traditional
VEP implementations [29]. Yet another use case developed by CSIRO is GT-
Scan [28], a web application that supports finding targets with minimal similar
sequences in the genome. By taking advantage of the AWS Lambda and AWS
DynamoDB, the authors managed to reduce the application costs from around
$700 to $2.50 compared to a cloud server-based solution. The use of serverless for
basecalling was validated by Grzesik et al. [17]. The authors implemented and
evaluated the possibility of running a basecalling process of nanopore sequencing
data. In their solution, they used AWS Lambda with Docker container support.
During experiments, they determined that four Lambda functions running in
parallel have enough computing power to support near real-time processing of
data produced by a single MinION device. The authors also noted that in their
experiments, they could scale up to 100 of such functions running simultaneously
in less than a minute. In another case, Crespo-Cepeda et al., in their paper [12],
analyse opportunities and challenges for using AWS Lambda for bioinformatic
workflows. In their work, the authors propose an architecture for running Cloud-
DmetMiner, based on AWS Lambda and AWS S3 services. Authors manage to
run successful experiments and conclude the paper with suggestion that using
serverless approach can reduce the time dedicated to managing and provisioning
cloud infrastructure manually. Another successful instance of taking advantage
of serverless computing for performing biomedical research has been presented
by Kumanov et al., in their work [24]. The authors describe a proof of concept
example of performing all-against-all pairwise comparison among 20,000 human
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protein sequences, implemented with Striped Smith-Waterman algorithm. Ac-
cording to the authors, use of serverless cloud computing allowed for increasing
speed of execution time at a low cost. In the cited case, the experiment can
be accomplished in about 2 minutes for a cost of less than one dollar, which is
a speed up of about 250 times in comparison to running the experiment on a
laptop computer. The authors also suggest that the similar approach could be
effective for tasks such as protein-folding, deep-learning or sequence alignment.

Based on the above findings, we can conclude that there is a growing interest
in both taking advantage of serverless infrastructures for bioinformatic work-
flows and performing metagenomic analytics in a portable manner. This paper
aims to expand knowledge in both areas by evaluating how portable analytic
workflows can benefit, in terms of processing time and energy consumption re-
duction, from integration with serverless-based infrastructure. This makes our
solution a unique one, since, to our best knowledge, there is no paper yet that
proposes and evaluates such a hybrid approach to basecalling.

3 Testing workflow and environment

For the purposes of the evaluation, we propose the workflow in which the offline
edge-based basecalling process is enhanced with optional serverless-based cloud
acceleration. In this workflow, the FAST5 files containing MinION Nanopore
sequencing reads are split into two batches - one to be processed directly on
the edge device and the second to be processed in a serverless manner in the
cloud environment. Splitting files is based on the estimated processing time for
both approaches, taking into account the available network upload speed. After
splitting the files into batches, the basecalling process for the first batch is started
locally, where the files from the second batch are sent to the AWS S3 bucket.
As soon as files appear in the S3 bucket, for each of them, an AWS Lambda
function is created to perform the data processing in a parallel manner. The
AWS Lambda functions are responsible for downloading the file from the S3
bucket, running the basecalling step, and uploading the results of the process to
a separate S3 bucket. An additional process is running locally on the edge device
that is responsible for monitoring the S3 bucket with results and downloading
them to the edge device. After all processing is done and all files with results
are sent back to the edge device, the data is ready for further processing, e.g.,
for the classification step. The described workflow is presented in Fig. 1.
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Fig. 1: Hybrid edge processing with serverless cloud offloading diagram.

As an edge device used during experiments, we selected Jetson Xavier NX.
It has already been proven to be an effective and sufficient board for running
basecalling experiments in our previous research, mainly thanks to its support for
GPU acceleration. Another essential feature of Jetson Xavier NX is its energy
efficiency and the capability to control power consumption with five distinct
power consumption modes. The full technical specification of Jetson Xavier NX
is presented below [3]:

– CPU - 6-core NVIDIA Carmel ARM®v8.2 64-bit CPU 6 MB L2 + 4 MB
L3

– GPU - NVIDIA Volta™ architecture with 384 NVIDIA® CUDA® cores
and 48 Tensor cores

– Memory - 8 GB 128-bit LPDDR4x 51.2GB/s
– OS Storage - SDHC card (32 GB, class 10)
– DB Storage - Solid State Drive, PNY 500GB M.2 PCIe NVMe XLR8 CS3030
– OS - Ubuntu 18.04.5 LTS with kernel version 4.19.140-tegra

As the serverless platform of choice, we selected AWS Lambda, which we
determined in our previous research to be an effective and feasible solution for
running basecalling in a serverless manner, thanks to its support for Docker [1]
containers and the ability to use up to 10,240 MB of RAM and up to 6 vCPU
cores. In our experiments, each Lambda function used a Docker container based
on Ubuntu 16.04 operating system with Node.JS script that downloaded the file
from AWS S3, invoked the basecalling process on it, and uploaded the results
to the output bucket. The Lambda function was configured and deployed with
the use of Serverless Framework. [6] As the basecalling software, we used Guppy,
which is a closed-source basecaller developed by Oxford Nanopore Technolo-
gies. It supports GPU acceleration that can take advantage of GPU on Jetson
Xavier NX and support multiple basecalling models (fast and high accuracy).
We also considered alternative basecallers such as Deepnano-blitz[10], Bonito
[2], or Causalcall [32], but after preliminary testing, they all proven to either not
work on AWS Lambda or on Jetson Xavier NX, or offer much lower performance
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in comparison to the Guppy basecaller. The whole processing was coordinated
by a custom Python program running directly on Jetson Xavier NX, that was
responsible for splitting the read files and passing them for further processing.
Upload to AWS S3 was handled by s3cmd [5], which also offers possibility to
throttle upload speeds, that we used to achieve different upload speeds in our
experiments.

4 Performance experiments

During experiments, we decided to evaluate the potential reduction in process-
ing time and energy consumed during a basecalling process that is accelerated
with serverless cloud offloading. Firstly, we ran a fully offline test where all pro-
cessing was happening directly on the edge device. In the next step, we ran
the fully online test for different upload speeds to measure the estimated pro-
cessing time for processing all data only in the cloud. Throughout experiments,
we ensured throttled upload speeds of 128kB/s, 256kB/s, and 512kB/s, which
can be achieved by using, e.g., 3G/4G Internet connection from a smartphone or
dedicated board module. During experiments, we used a subset of benchmarking
dataset of Klebsiella pneumoniae reads [31]. The used dataset had the size of 178
MB and consisted of 2,240 separate sequence reads files. The Guppy basecaller
was configured with a ”high accuracy” mode to ensure improved basecalling ac-
curacy. The Jetson Xavier NX used the lowest power mode (2 Cores, 10 W) as
well as the highest power mode (6 cores, 15W) to evaluate how the capabilities
of edge device impact the results of the experiments.

In the preliminary testing, we determined that the fully offline edge process-
ing of the prepared dataset took 320 seconds with an average power consumption
of 11.96 W for lowest power mode and 240 seconds with an average power con-
sumption of 15.3 W for highest power mode. The second workflow in which all
files were uploaded to the cloud for online serverless processing took 700 seconds
for 512kB/s upload speed, 980 seconds for 256 kB/s upload speed, and 1,520 sec-
onds for 128 kB/s upload speed. For each of these scenarios, the average power
consumption of edge device was measured to be around 4.25 W. Based on the
outcomes of fully serverless processing for each of the average upload speeds,
we determined the split ratio between files that should be processed at the edge
and files that should be processed in the cloud that would result in processing
all the data in the fastest manner, optimizing for execution speed. The ratio
was obtained by comparing average processing speed of processed megabytes
per second for edge and cloud processing. Based on that split ratio, we decided
that for the upload speed of 128 kB/s, around 17.5% of the data was assigned for
cloud processing for lowest power mode and 13.8% of of the data for the highest
power mode, for the upload speed of 256 kB/s, 24.9% of data was sent for cloud
processing for lowest and 19% for highest power mode, and for the upload speed
of 512 kB/s, 31% of data was assigned to be processed on the cloud side for
lowest power mode and around 25% for highest power mode.
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During experiments in which we evaluated the hybrid edge-serverless work-
flow with the mentioned split ratio of the files to be processed, we observed a
reduction in processing time to 264 seconds and 206.9 seconds for the upload
speed of 128 kB/s, to 240 seconds and 193.5 seconds for 256 kB/s, and to 220 sec-
onds and 179.1 seconds and for upload speed of 512 kB/s for lowest and highest
power modes, respectively. The results and comparison of all three experimental
scenarios for lowest power mode are presented in Fig 2 while results for high-
est power mode are presented in Fig 3. During the hybrid edge processing with
cloud offloading, the average power consumption was equal to 12.4 W for lowest
power mode in all tested cases and 15.6 W for highest power mode, also for
all tested cases. Fig. 4 presents the energy consumed by the edge device during
each considered processing scenario in lowest power mode, while Fig. 5 presents
results for highest power mode.

Fig. 2: Dependency between the basecalling execution time and upload speed
for various strategies of data processing for lowest power mode of Jetson Xavier
NX (offline edge processing vs. edge with cloud offloading vs. online serverless
processing).

Based on the obtained results, we can observe that the proposed hybrid
approach (edge processing with serverless cloud offloading) allows reducing con-
sumed energy by 14% (lowest power mode) and 12% (highest power mode) as
well as processing time by 17.3% (lowest power mode) and by 14% (highest
power mode) for the upload speed of 128 kB/s. For 256 kB/s, we can achieve re-
ductions by 22% (lowest power mode) and 20% (highest power mode) as well as
25% (lowest power mode) and 18% (highest power mode) for energy consumed
and processing time, respectively, in comparison to the offline edge processing
scheme. As we initially expected, we can observe the best results for upload
speed of 512 kB/s, where we achieved a 28.7% (lowest power mode) and 24%
(highest power mode) reduction of energy consumption as well as 31.2% (low-
est power mode) and 25.5% (highest power mode) reduction of processing time
compared to offline edge processing. In all considered cases, we see that fully on-
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Fig. 3: Dependency between the basecalling execution time and upload speed for
various strategies of data processing for highest power mode of Jetson Xavier
NX (offline edge processing vs. edge with cloud offloading vs. online serverless
processing).

line serverless processing was the slowest of all compared approaches. However,
what is interesting, we observed that for the upload speed of 512 kB/s, the fully
online serverless basecalling process is more energy-effective than the fully offline
edge processing approach, offering a reduction of energy consumption by 22.2%
(lowest power mode) and 19.1% (highest power mode), at the cost of processing
time being increased to 700 seconds. This suggests that when energy preserv-
ing is more critical, a fully online basecalling process might potentially be more
effective. We also observe that using highest power mode of Jetson Xavier NX
does not necessarily means reduced energy-effectiveness, as in tested cases the
energy consumption was similar in comparison to lowest power mode, while the
processing time was significantly lower for highest power mode.

Fig. 4: Dependency between the energy consumed during basecalling for various
strategies of data processing for lowest power mode of Jetson Xavier NX (offline
edge processing vs. edge with cloud offloading vs. online serverless processing).
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Fig. 5: Dependency between the energy consumed during basecalling for various
strategies of data processing for highest power mode of Jetson Xavier NX (offline
edge processing vs. edge with cloud offloading vs. online serverless processing).

5 Results Summary and Concluding Remarks

The works presented in the paper expand our previous research where we con-
sider edge and serverless workflows totally separately. Considering the results of
the experiments presented in the previous section, we can notice that the com-
bination of offline edge processing with online serverless processing, given access
to sufficient network connection, can be an effective strategy for reducing en-
ergy consumption and processing time when performing basecalling operations.
In one of the cases, we managed to achieve a 31.2% reduction of processing
time and 28.7% reduction of energy consumption in comparison to a fully offline
process. Our approach may thus optimize the utilization of available computing
resources. Throughout the experiments, we have also observed that in the tested
scenarios, fully online serverless processing can be more effective than offline pro-
cessing from an energy consumption standpoint. The use of the serverless AWS
Lambda offering ensures scalability of the underlying infrastructure on demand
while at the same time keeping the maintenance overhead low, which makes it
a very compelling solution as an optional acceleration engine for bioinformatics
computations. Thanks to its scale-up capabilities, it can be especially effective
when the workloads are rarely executed during the day. While so far we did
not see massive adoption of serverless computing for accelerating bioinformatics
workflows, we believe that with the rapid growth of the technology in the fu-
ture, it can enable even more use cases within the bioinformatics domain. This
observation causes that there is still a lot of room for potential improvements
and developments in this area.
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