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Abstract. Temporal networks have been successfully applied to repre-
sent the dynamics of protein-protein interactions. In this paper we focus
on the identification of dense subgraphs in temporal protein-protein in-
teraction networks, a relevant problem to find group of proteins related
to a given functionality. We consider a drawback of an existing approach
for this problem that produce large time intervals over which temporal
subgraphs are defined. We propose a problem to deal with this issue and
we design (1) an exact algorithm based on dynamic programming which
solves the problem in polynomial time and (2) a heuristic, based on a
segmentation of the time domain and the computation of a refinement.
The experimental results we present on seven protein-protein interaction
networks show that in many cases our heuristic is able to reduce the time
intervals with respect to those computed by the existing methods.

Keywords: Network mining - Temporal Graphs - Protein Protein In-
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1 Introduction

The interactions between biological elements (genes or proteins, for example) are
usually represented and analysed with a network/graph. Recently, the research
focus has shifted to the evolution over time of the interactions. A model intro-
duced to represent this evolution is that of temporal network (or temporal graph)
[11, 14]. This model enriches the classical graph one by defining when edges are
active over a discrete sequence of timestamps. The analysis of temporal networks
has provided valuable insights about their structure and properties, notable ex-
amples being community detection [16, 4, 8] and frequent subgraph discovery [19,
15].

Protein-Protein Interaction (PPI) networks have been deeply studied in bioin-
formatics. In a PPI network, vertices represent gene coding proteins, edges in-
teraction among proteins (for example co-expressed protein pairs). Since in-
teractions among proteins change over time, their dynamic evolution has been
analyzed considering temporal networks [9].

One of the most relevant problem in (static or temporal) networks is the iden-
tification of cohesive subgraphs. In PPI networks, cohesive subgraphs represent
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protein complexes involved in a biological process. Several models of cohesive
subgraphs have been considered in literature, like cliques, s-plexes or s-clubs.
A central model of cohesive subgraph applied in literature is that of densest
subgraph, that defines a cohesive subgraph as one that maximizes the density
(ratio between the number of edges and the number of vertices). The densest
subgraph problem can be solved in polynomial-time with Goldberg’s algorithm
[10] and it can also be approximated within factor 3 in linear-time [1, 3].

In many network mining applications, finding a single dense subgraph doesn’t
provide enough information on the network structure. Therefore, other approaches
have been proposed, a notable example being Top-k-Overlapping Densest Sub-
graphs, introduced in [17,7]. This problem asks for a set of k densest subgraphs,
with k£ > 1, that may share vertices. The problem aims at maximizing an ob-
jective function that contains the sum of densities of the k& subgraphs and a
distance between them. The Top-k-Overlapping Densest Subgraphs problem has
been recently applied to biological networks [12] and to dual networks [6].

The identification of densest subgraphs in temporal networks has been con-
sidered to analyze social networks in [17,18] has a key to identify interesting
episodes, like groups of users of a platform highly interacting in a temporal
interval. In [17,18] it is introduced the k-Densest-Temporal-Subgraphs problem
whose goal is the identification of k > 2 densest temporal subgraphs in disjoint
time intervals. In [17, 18], it is shown that the problem can be solved in polyno-
mial time via dynamic programming, and Goldberg’s algorithm. However, due
of its time complexity, the algorithm is not applicable even for medium-size tem-
poral networks [17], hence heuristics and approximation algorithms have been
considered [17, 5, 2].

One of the drawbacks of the k-Densest-Temporal-Subgraphs approach prop-
soed in [17] is that optimal solutions for the problem usually induce a segmen-
tation, that is each timestamp of the time domain belongs to an interval of the
solution. It follows that a solution of k-Densest-Temporal-Subgraphs: (1) May con-
tain temporal subgraphs that are defined over large intervals; (2) Some vertices
or edges may incorrectly be included in a subgraph of the solution.

Here we consider an approach (called k-Densest-Temporal-Refinement) that
aims at correcting this drawback of the k-Densest-Temporal-Subgraphs model and
that aims at identifying whether there exist temporal graphs of high density and
defined over smaller intervals with respect to the ones of a solution of k-Densest-
Temporal-Subgraphs. The idea is that if a dense temporal subgraph contains a
temporal subgraph active in a smaller interval and with a close density, then this
latter better represents the real cohesive group of elements.

We first present a dynamic programming algorithm that is able to solve the
problem in polynomial time. However, the time complexity of this algorithm
makes it not applicable even on small size graphs. Thus we design a heuristic for
the problem and we present an experimental evaluation on a set of seven PPI
networks. The experimental results show that in many cases our approach is able
to reduce the length of the intervals, while maintaining the density significantly
high.
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The paper is organized as follows. First in Section 2 we give the definitions
and we introduce the problems we are interested into. Then, in Section 3 we
present a dynamic programming algorithm for the k-Densest-Temporal-Refinement
problem. In Section 4 we present an efficient heuristic for the problem, while in
Section 5 we present an experimental evaluation on seven PPI temporal net-
works.

2 Definitions

A time domain T = [t,ta,...,t,], where t; < to < -+ < t,, is a sequence of pos-
itive integer, each one called timestamp. An interval [t;,t;] in T = [t1, %2, ..., t]
is the sequence of timestamps between t;, t;, with t; < t;. T" = [t,,tp] is a

subinterval of T' = [t.,t4], denoted by T" C T, if t. < t, <t < tqand t. < t, or
ty < tq. Now, we can introduce the definition of temporal graphs.

Definition 1. G = (V, T, E) is a temporal graph, where V is a set of vertices,
T is a time domain and E is a set of triple {u,v,t}, where u,v € V andt € T.

In the following we denote by z the number of timestamps in 7 ( that is
z = |T|), by n the number of vertices in V (that is n = |V|) and by |m| the
number of edges in F (that is m = |E|). We give now the definition of induced
temporal subgraph.

Definition 2. Given a temporal graph G = (V, T, E), an induced temporal sub-
graph of G is defined as a pair G[T, V'], where

— T is an interval in T over which the induced temporal subgraph is defined
— V' CV is the set of vertices of the induced temporal graph.

Notice that the edge set of G[T,V'], denoted by E(G[T,V']), is defined as
follows:

EGT,\V') = {{u,v,t} :u,v e V't € T}.

Given an induced temporal subgraph G[T, V'] and a timestamp ¢ that belongs
to T, we say that G[T, V'] covers t. The density of an induced subgraph G[T, V"],
denoted by dens(G[T,V"]), is defined as follows:

dens(G[T,V']) = |E(G|[Vm

Given an interval I in T, we denote by MaxzD(I) the density of a densest
subgraph of G defined in interval I.

The first problem we consider, called k-Densest-Temporal-Subgraphs, intro-
duced in [17], is defined as follows.
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Problem 1. k-Densest-Temporal-Subgraphs

Input: A temporal graph G = (V, T, E), a positive integer k > 2.

Output: A set S of k temporal subgraphs, S = {G[T1,V1],...,G[Ty, Vk]}, such
that 71, ..., Ty are disjoint intervals and

k
Z dens(G[Ty, Vi])

is maximized.

As discussed in [17], the density of an interval is a non decreasing function
with respect to the length of an interval. Thus there exists an optimal solution of
k-Densest-Temporal-Subgraphs that induces a segmentation of the time domain,
that is each timestamp of the time domain 7 is covered by exactly one temporal
subgraph of the solution. The methods proposed in literature [5,17] compute
indeed solutions that induce a segmentation, and they may contain subintervals
that gives a small contribution to the density.

Here we propose an approach to possibly shrink interval length. We start by
introducing the definition of e-refinement.

Definition 3. Given an induced temporal subgraph G[T,U] of a temporal graph
G=(V,T,E), G[T',U’] is an e-refinement of G[T,U] if

1. T' is a subinterval of T
2. dens(G|T",U’]) > (1 —¢) dens(G[T,U))
3. There is no e-refinement of G[T, U] in subintervals of T"

Notice that by Point 3 of Definition 3, if G[T”,U’] is an e-refinement of
G[T,U] it is not possible to further reduce the interval 7" in order to obtain an
e-refinement of G[T, U].

The definition of e-refinement can be extended to e-complete refinement of
a solution of k-Densest-Temporal-Subgraphs.

Definition 4. Given a temporal graph G = (V, T, E), an e-complete refinement
RF = {Ry,...,R,}, where each R;, 1 < i < q, is a quadruple (V;,T;,V/,T})
such that Ty, ...,T, is a segmentation of T, G[V;,T;] is a densest subgraph in

interval T; and V/, T} are defined as follows:

1. If there does not exist a e-refinement of G[V;, T;], then V! =V, and T = T;

and the profit of R;, denoted by p(R;), is defined as p(R;) = (1—¢) dens(G[T;, Vi])

2. If there exists an e-refinement of G[T;, Vi, then G[T/,V/] is an e-refinement

of G|T;, V;] of mazimum density; the profit of R;, denoted by p(R;), is defined
as p(R;) = dens(G[T},V/])

R

The profit of a e-complete refinement of R1,...,Rq of G1,...,Gyq is:

ZP(Rz‘)~

%
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Problem 2. k-Densest-Temporal-Refinement
Input: A temporal graph G = (V, T, E), a positive integer k > 2.
Output: An e-complete refinement RF' having maximum density.

Algorithms for Computing a Densest Subgraph

A densest subgraph in a given static graph can be computed in O(mnlogn)
time by reducing the problem to min-cut with Goldberg’s algorithm [10]. When
mn < n?, the time complexity of Goldberg’s algorithm for unweighted graphs has
been improved to O(n?) [13]. Finding a densest subgraph can be approximated
within factor % in linear time with a greedy algorithm (here called Charikar’s

algorithm) [3].

3 An Exact Algorithm for k-Densest-Temporal-Refinement

In this section, we present a dynamic programming algorithm for the k-Densest-
Temporal-Refinement problem. First, define P(j,h), 1 < j < zand 1 < h <k,
as a function that is equal to the maximum profit of an e-complete refinement
consisting of h subgraphs until timestamp t; < ¢..

Given two timestamps t; and ¢;, with 1 < t; <¢; < t., we denote by Pr([z, j])
the maximum profit of a temporal subgraph of G defined in interval [¢;, ¢;]. Now,
P(j,h) can be computed as follows:

. _ maX15i<jP(7;,h—1)+PT([i+1, ]) lfQShSZ
P, = {Pr([l,j]) i (1)

The computation of P(j,h) with Recurrence 1 requires the computation of
Pr([i,j]), for each ¢ and j, with 1 < i < j < z. Pr([¢,J]) can be computed as
follows:

(1 —e)MaxD([i,])

Pr({i, j]) = max { max, ycpi.g) MazD([a, b]) )

Lemma 1. P(j,h) = q if and only if there exists an e-complete refinement of
G on interval [1,j] consisting of h subgraphs of profit q.

Proof. We prove the lemma by induction on h. In the base case, when h = 1,
then the profit of a single temporal subgraph in the interval [t1,¢;] is equal to
Pr[1,5].

Assume that the lemma holds for each 1 < i < j, we prove that it holds for
j. Assume that P(j, h) = ¢, then by Recurrence 1 there must exists a value i < j
such that (1) P(i,h—1) = ¢1 (2) Pr([i+1,j]) = g2, where ¢ + ¢2. By induction
hypothesis there exists an e-complete refinement consisting of h — 1 subgraphs
in interval [1,4] of profit ¢; and by definition of Pr, there exists a subgraph in
[i + 1, 7] of profit go.
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Assume that there exists an e-complete refinement S consisting of h sub-
graphs in interval [1, j] of profit ¢. Assume that among the subgraphs in S, the
subgraph defined in the leftmost interval [i + 1, j] has profit Pr([i + 1, j]) = go.
Then there exists an e-complete refinement consisting of A — 1 subgraphs in in-
terval [1,1] of profit ¢;, with g1 + g2 = ¢. By induction hypothesis, it holds that
P(i,h—1) = g1 and, by the first case of Recurrence 1, it holds that P(j,h) = g.

|

Theorem 1. k-Densest-Temporal-Refinement can be solved in O(z*mnlog(n))
time.

Proof. By Lemma 1 it follows that an optimal solution of k-Densest-Temporal-
Refinement on instance G = (V, E,T) is equal to P(z,k). Now, P(j,h), with
1<j<zand1l < h <k, consists of zk entries. Each entry P(j,h) can be
computed in time O(z), assuming the values Pr([i + 1,35]) are known. Thus,
since k < z, the entries P(j,h), with 1 < j < zand 1 < h < k, can be computed
in O(z3) time, assuming the values Pr([i + 1,j]) are known.

The values Pr([i,j]) are O(2?) and each value can be computed by applying
the Goldberg’s algorithm on the graph active in interval in [a,b] with [a,b] a
subinterval of [i, j]. This requires, for each 4, j, the computation of O(2?) densest
subgraph via Goldberg’s algorithm, so requiring time O(z?mn logn). The overall
time complexity to compute an e-complete refinement is then O(z*mnlogn). O

4 A Heuristic of k-Densest-Temporal-Refinement

While k-Densest-Temporal-Refinement is solvable in polynomial time with the dy-
namic programming algorithm given in Section 3, the computational complexity
of this algorithm makes it not practical even for small size temporal networks.
Indeed, we applied it to the temporal PPI networks described in Section 5 and
it was not able to produce any result within 10 hours.

Thus, we have designed an efficient heuristic, called Reduce, for the k-Densest-
Temporal-Refinement problem. Reduce first computes a solution S = {G[T7, V1],
G[To, Va], ..., G[Ty, Vi]} of the k-Densest-Temporal-Subgraphs problem, by ap-
plying the method described in [5]. Notice that the temporal graphs in S induce
a segmentation, of the time domain and that the solution S may not be an
optimal solution of k-Densest-Temporal-Subgraphs.

For each temporal subgraph G[T;,V;], 1 < ¢ < k, of S, with dens(G[T;, V;]) =
d, Reduce looks for an e-refinement by computing the following three temporal
subgraphs:

1. G[T;1, Vi) is computed by applying Charikar’s algorithm on the temporal
subgraph of G[T;, V;] obtained by removing the first and the last timestamp
of T}

2. G[T;2,V; 2] is computed by applying Charikar’s algorithm on the temporal
subgraph of G[T;, V;] obtained by removing the first timestamp of T;
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3. G[T;3,V; 3] is computed by applying Charikar’s algorithm on the temporal
subgraph of G[T;, V;] obtained by removing the last timestamp of T;

Now, if G[T;1,V; 1] has density at least (1 — ¢)d (hence is an e-refinement
of G[T},Vi]), the three previous steps are applied on G[T; 1, V;1]. If G[T; 1, V;1]
has density smaller then (1 —¢€)d, and one of G[T; 2, V; 2] G[T; 3, Vi3] has density
at least (1 — €)d (thus there exists an e-refinement of G[T;,V;]), the subgraphs
having largest density between G[T; 2, Vi 2| G[T; 3, Vi 3] is selected and the three
steps are applied on it.

If none of G[T; 1, Vi), G[Ti .2, Vi2], G[T; 3, Vi3] have density at least (1 —¢)d,
the algorithm defines V/, T} in R; = (V;,T;,V/,T}) as follows: V;/ = V; and
=T,

5 Experimental Analysis

In this section, we present the experimental results for our heuristics (Reduce) on
real-world datasets. Since the real-world datasets we consider are over a limited
number of timestamps (i.e. 36) we have defined small values of k, that is k = 2
and k = 3, in the k-Densest-Temporal-Refinement problem. We implemented Re-
duce in Python on MacBook-Pro (OS version 12.0.1) with processor 2.9 GHzIntel
Core 15 and 8GB 2133 MHz LPDDR3 of RAM, Intel Iris Graphics 550 1536 MB.

Table 1. PPI temporal networks informations

PPINs Temporal Networks|# Verticess|#Edges|# Timestamps
DPPIN-Babu 5,003 111,466 36
DPPIN-Gavin 2,541 140,040 36
DPPIN-Hazbun 143 1,959 36
DPPIN-Ho 1,548 42,220 36
DPPIN-Ito 2,856 8,638 36
DPPIN-Krogan(LCMS) 2,211 85,133 36
DPPIN-Lambert 697 6,654 36

For testing the performances of Reduce, we have considered seven PPI tempo-
ral networks, taken from [9]. The characteristics of the networks are summarized
in Table 1. Notice that all the temporal networks we considered are defined over
a time domain consisting of 36 timestamps, while the number of vertices and
the number of edges vary significantly (the number of vertices ranges from 143
to 5003 and the number of edges ranges from 1959 to 140040).

In Table 2 we report the densities and the intervals of the solutions of k-
Densest-Temporal-Subgraphs computed by Reduce (called first phase) and the
refinement solutions, where ¢ = 0.05, computed by Reduce (called second
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phase). We report also the Jaccard’s index similarity® of the solutions returned
by the two phases of Reduce in order to measure the fraction of shared vertices.

Table 2 shows that for & = 2, when Reduce finds an e-refinement, the sub-
graph computed by the second phase of Reduce has a Jaccard index of at least
0.94. Similar results are obtained for k£ = 3. Thus the e-refinement computed in
the second phase are very similar to the subgraphs computed in the first phase.
On the other hand, there is a significant reduction in the length of the intervals
over which the subgraphs returned by the second phase are defined, as discussed
next.

In Table 3 we present, for each value of k& and for each temporal network
considered, the ratio between the densities and the interval lengths of the so-
lutions returned by Phase 2 and Phase 1 of Reduce (if Phase 2 produces an
e-refinement). The results show that the e-refinements significantly reduce the
interval length. For instance for k = 2, the e-refinements computed are defined
over intervals of length at most 75% and at least 31% of the interval length of
first phase solutions. For k = 3, the interval length of e-refinement solutions are
at most 81% and at least 9% of the interval length of first phase solutions.

In Table 4, we report the profit of the solutions of the k-Densest-Temporal-
Refinement problem. We report in bold the densities for the cases where Phase 2
is able to computed an e-refinement, while for the other cases the profit is (1 —¢)
of the density of the subgraph returned by Phase 1.

Finally, we evaluate, for each network considered, the minimum value of &
so that Phase 2 of Reduce is able to compute an e-refinement. In Table 5 we
report the ratios between the densities of first and second phases of Reduce by
varying € from 5% to 37% (in bold the e-refinement when € = 0.05). Notice that,
while the e-refinements have a ratio close to 1 (for 12 of the 17 0.05-refinements
computed the ratio is at least 0.99), for the cases where Reduce is not able to
computed an e-refinement the ratio is always smaller than 0.9. Furthermore,
for three networks (DPPIN-Hazbun, DPPIN-Ito, DPPIN-Lambert), the second
phase of Reduce was never able to compute an e-refinement, while for the other
networks this happens in at most one case. The three networks DPPIN-Hazbun,
DPPIN-Ito, DPPIN-Lambert are also (considered as static graphs) those having
lower density (they have a density of at most 13.7, the other graphs a density of
at least 22). This suggest that the existence of an e-refinement may be related
to the density of the input graph.

6 Conclusion

We have presented a problem for finding dense subgraphs in temporal networks,
with an application to protein-protein interactions. We have designed an exact
algorithm based on dynamic programming, that solves the problem in polyno-
mial time, but it is not practical even for small size datasets. We have designed
a heuristic, based on a segmentation of the time domain and the computation

3 Jaccard’s index measures the similarity between two sets by taking the ratio of
intersection over union of the two sets.
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Table 2. Refinement solution for € = 0.05, k = 2 and k = 3 of the first phase.

Datasets [ | k=2 | k=3

first phase

density 78.58 75.99 | 78.58 60.87 72.15
DPPIN-Babu interval (0,15) (16,35)| (0,8) (9,27) (28,35)

second phase

density 78.58 72.16 | 78.58 — 72.13

interval (0,8) (23,31)] (8,8) - (28,31)

Jaccard index 1 0.98 1 - 0.99

first phase

density 123.41 119.74 {123.38 81.07 114.33
DPPIN-Gavin interval (0,11) (12,35)((0,10) (11,24) (25,35)

second phase

density 123.38 114.45 {123.38 - 114.29

interval (0,8) (23,31)] (0,8) - (25,31)

Jaccard index 1 0.94 | 0.99 — 1

first phase

density 19.52 19.36 | 18.75 15.05 16.33
DPPIN-Hazbun interval (0,13) (14,35)|(0,10) (11,20) (21,35)

second phase

density - - - - -

interval - - - - -

Jaccard index - - - - -

first phase

density 39.94 39.25 | 38.91 33.97 38.83
DPPIN-Ho interval (0,19) (20,35)| (0,9) (10,24) (25,35)

second phase

density 38.86 38.80 |38.91 33.77 38.74

interval (0,8) (31,35)| (5,8) (18,19) (6,6)

Jaccard index | 0.94 0.98 1 0.97 1

first phase

density 5.01 4.48 | 4.27 448 4.13
DPPIN-Ito interval (0,20) (21,35)|(0,12) (13,24) (25,35)

second phase

density - - - - -

interval - - - - -

Jaccard index - - - - -

first phase

density 96.82 97.48 | 96.78 64.98 92.24
DPPIN-Krogan(LCMS)|interval (0,15) (16,35)|(0,10) (11,30) (31,35)

second phase

density 96.71 92.47 | 96.71 — 92.14

interval (0,8) (22,31)] (0,8) - (31,31)

Jaccard index 1 0.95 1 - 0.99

first phase

density 19.23 20.0 |17.89 16.61 15.47
DPPIN-Lambert interval (0, 15) (16, 35)|(0, 11) (12, 24) (25, 35)

second phase

density - - - - -

interval - - - - -

Jaccard index
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Table 3. Ratio between the densities and the interval lengths of the solutions returned
by Phase 1 and Phase 2 of Reduce for € = 0.05

Datasets k=2 k=3
DPPIN-Babu density | 1 0.95| 1 - 0.99
interval|0.56 0.45/0.11 — 0.5
DPPIN-Gavin density [0.99 096 1 — 0.99
interval|0.75 0.33/0.81 — 0.64
DPPIN-Hazbun density | - - | - - -
interval| - - | - - -
DPPIN-Ho density [0.97 0.99| 1 0.99 0.97
interval|0.45 0.31| 0.4 0.13 0.09
DPPIN-Ito density | - - | - - -
interval| - - | - - -
DPPIN-Krogan(LCMS)|density [0.99 0.95(0.99 — 0.99
interval|0.56 0.5 |0.81 — 0.2
DPPIN-Lambert density| - - | -— - —
interval| - - | — - -

Table 4. Profit of the solutions for ¢ = 0.05 of the k-Densest-Temporal-Refinement
problem

Datasets K=2 K=3

DPPIN-Babu 78.58 72.16 |78.58 57.83 72.13
DPPIN-Gavin 123.38 114.45| 1 77.02 114.29
DPPIN-Hazbun 18.54 18.39 |17.81 14.30 15.51
DPPIN-Ho 38.86 38.80 (38.91 33.77 38.74
DPPIN-Ito 4.76 4.26 | 4.06 4.26 3.92
DPPIN-Krogan(LCMS)| 96.71 92.47 (96.71 61.73 92.14
DPPIN-Lambert 18.27 19 16.99 15.78 14.70

Table 5. Ratio between the solutions (densities) of the first and second phases - varying
e from from 5% to 37% for refinement

Datasets K=2 K=3

DPPIN-Babu 1 0.95 1 0.88 0.99
DPPIN-Gavin 0.990.96/ 1 0.88 0.99
DPPIN-Hazbun 0.83 0.75/0.86 0.87 0.89
DPPIN-Ho 0.970.99| 1 0.99 0.97
DPPIN-Ito 0.78 0.83|0.81 0.81 0.81
DPPIN-Krogan(LCMS)|0.99 0.95(0.99 0.86 0.99
DPPIN-Lambert 0.73 0.65|0.77 0.63 0.72
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of a refinement, that allows us to produce dense subgraphs and to reduce the
length of the intervals.

Future works include an extension of the experimental part to other PPI

networks in order to verify if properties of the networks are related to the ex-
istence of an e-refinement. It would be interesting to understand if the dense
subgraphs identified are related to some functionality and, more generally, a bi-
ological analysis of the inferred temporal subgraphs. Finally, from an algorithmic
point it would be interesting to design other heuristics for the problem.
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