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Abstract. The main goal of the research presented in this paper was
to estimate the performance of applying neural networks trained with
the usage of a chaotic model, that may serve as hashing functions. The
Lorenz Attractor chaotic model was used for training data preparation,
and Scaled Conjugate Gradient was used as a training algorithm. Net-
works consisted of two layers: a hidden layer with sigmoid neurons and
an output layer with linear neurons. The method of bonding the in-
put message with chaotic formula is presented. Created networks could
return 256 or 512 bits of hash, however, this parameter can be easily
adjusted before the training process. The performance analysis of net-
works is discussed (that is the time of hash computation) in comparison
with popular standards SHA-256 and SHA-512 under the MATLAB en-
vironment. Further research may include analysis of networks’ training
parameters (like mean squared error or gradient) or analysis of results of
the statistical tests performed on networks output. The presented solu-
tion may be used as a security algorithm complementary to a certificated
one (for example for additional data integrity checking).

Keywords: Hashing Algorithm · Artificial Neural Networks · Scalable
Cryptography Algorithm · Hashing Efficiency

1 Introduction

Hashing functions return a fixed-length bit string from an input bit string, [22].
This functionality may be utilized, for example, in passwords storage, data in-
tegrity checking, or digital signatures preparation. Three main features of hash-
ing algorithms are:

1. the process of hash calculation may involve more than one usage of the
hashing algorithm,

2. it should be impossible to retrieve the content of the original message from
its hash,
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3. probability of returning the same hash value from two different messages
should be minimal.

Currently, the most popular hashing standards, which are also certificated, are
called SHA-2 and SHA-3 [14, 15]. Those functions compute a fixed-length hash
from a message. Available hashes lengths vary from 224 bits to 512 bits and
the length determines the algorithm – e.g. SHA-256 will always return 256 bits
of the hash. Certain certificated standards offer possibilities of choosing two
different hashes lengths, for example, a hash equal to 224 bits is created from
the truncation of the SHA-256 digest. However, the user has no more possibilities
to adjust the hash length. It can be concluded that it is either one fixed length
that depends on the algorithm or two possible lengths where the second one
comes from the truncation of the hash of size equal to the first one. Hashing
algorithms whose outputs are smaller, for example, vary from 80 bits to 160
bits, are called light cryptography hash functions [5].

Since late 1970, researchers proposed many different approaches to hash func-
tion construction. Most of the ideas are described in [19], for example, hashing
function based on the block ciphers, cellular automata, discrete logarithm prob-
lem, or knapsack problem. Testing the strength and effectiveness of this kind
of algorithms is still a problem. Existing test suits, like for example SHAVS
presented in [13], are dedicated to the tested algorithm. Secondly, the National
Institute of Standards and Technology (NIST) in the presented report state that
[13]: ’The SHAVS is designed to test conformance to SHA rather than provide a
measure of a product’s security...’.

In this paper, an idea of hashing neural networks proposed in [20, 21, 19] is
further developed, showing the performance of the ANNs used. The discussed
networks have two layers: a hidden layer with sigmoid neurons, and an output
layer consisting of linear neurons. Two hash lengths were considered, that is 256
and 512 bits (to compare results with certificated standards). For each tested
hash length seven networks were generated. Generated networks differed in the
number of neurons in the hidden layer. The Lorenz Attractor, which appears
to have chaotic behavior under appropriate conditions, was utilized for training
data preparation. The length of the returned hash could be potentially set with
the precision of one bit before the training process. Furthermore, the perfor-
mance of the proposed networks is tested in comparison with the performance of
the chosen certificated standards (SHA-256 and SHA-512) under the MATLAB
environment. The time of hash computation from data that differed in size was
considered as the performance measure.

The paper after introducing the idea of the approach and giving state-of-the-
art, focuses on the presentation of the performance testing of the ANN-based
hashing functions, comparing the obtained models with certificated ones.
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2 Related Work

In this section hashing algorithms that are based on chaotic systems are de-
scribed. In each article not only the chaotic model was considered, but also the
core of the hashing algorithm.

In [11] authors proposed their own algorithm, which was based on the Lorenz
Attractor. However, they incorporated some functions from the SHA-2 algo-
rithm, for example rotations. In their research, similarly to the presented re-
search, time of computation was considered as a performance measure. The
algorithm core consisted of four iterations that were combining intermediate
hash results and secret keys. The final results were compared with SHA-1. Even
though the proposed algorithm was more efficient, SHA-1 is considered as an
outdated function, and there were no comparisons with current standards, like
SHA-2 or SHA-3.

The algorithm presented in [10] was not a classical hashing scheme but en-
abled checking the integrity of the data. The proposed procedure was based on
huge numbers and their powers under the finite field, which makes the whole
idea similar to the RSA ciphering scheme. The authors compared the efficiency
of their solution with the Advanced Encryption Standard (AES) and concluded
that the performance of their algorithm was slightly worse.

In [9] authors incorporated similar operations as described in the [10], a
sponge function that was absorbing input data, and a hyper-chaotic Lorenz
system. Because of the complexity of the algorithm, the authors noticed per-
turbations over time in the function performance. The solution was tested for
256 bit, and 512 bit hash lengths, but enabled returning 1024 bits of hash and
more. Authors compared their proposition with SHA-2 and SHA-3 standards,
however, did not test it for smaller hashes values.

The innovative idea was presented in [1], where the authors proposed their
own equation for input data absorption. Their solution was based on the three-
dimensional chaotic map and was excessively tested. The proposed function could
return 128, 160, 256, or 512 bits of the hash. Results of the research were com-
pared with SHA-1 and MD5. Both are considered as outdated.

Hashing algorithms may be created in many different ways. For example, in
[8] some interesting hashing concepts that are based on evolutionary algorithms
and genetic algorithms are presented. More information about hashing strategies
is presented in the [17].

Chaotic attractors may be also used in different cryptographic areas. For ex-
ample, in [6] authors proposed an image encryption scheme based on the Lorenz
model. The core of the algorithm was utilizing crossover operations and se-
quences generated by the attractor. Even though the presented scheme was not
a hashing function, research conducted by the authors proved the usefulness of
chaotic systems in cryptographic solutions.

In contrast to described solutions, an idea presented in the paper enables
the utilization of Artificial Neural Networks (ANNs) trained with the usage of
the Lorenz Attractor as hashing models. The main advantage of the proposed
scheme is a highly scalable ANNs output. The length of the hash returned by

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_48

https://dx.doi.org/10.1007/978-3-031-08754-7_48
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those networks can be adjusted with a precision of one bit (before the training
process). Furthermore, the performance of ANNs was tested and results were
compared with one of the most popular – and certified by the National Institute
of Standards and Technology – Secure Hash Standards, that is SHA-256 and
SHA-512. Efficiency comparison performed under MATLAB environment tends
to be in favor of the presented networks. Further research will cover the security
tests of networks and will also include a comparison with world standards.

3 The Chaotic Model Used

Chaotic equations are non-linear and dynamic systems (models), that are sig-
nificantly vulnerable to the changes in their initial conditions [4]. The output
of such models becomes non-deterministic over time. This phenomenon is also
called deterministic chaos. One of the most iconic scientist that was investigat-
ing this topic was Edward Lorenz. He once described chaos as a situation [4]:
when the present determines the future, but the approximate present does not
approximately determine the future.

In our work the Lorenz Attractor was used for ANNs training data prepa-
ration. Two sets of data were prepared: input data containing binary strings
representing messages to be hashed, and output data that contained hashes of
those messages obtained with the usage of Lorenz Attractor. The idea was to
code a message into attractors’ initial conditions and then solve the model. The
result was considered as a message hash.

The Lorenz Attractor is defined as presented in Equation (1):
dx1

dt = a(x2 − x1)
dx2

dt = cx1 − x2 − x1x3
dx3

dt = x1x2 − bx3

(1)

This model becomes chaotic when: a = 10, b = 8/3 and c = 28 [16]. Each
input binary string M = [m1,m2,m3, ...,mn] (where n denotes the desired hash
length), was divided appropriately, converted into two real numbers that were
used as first two initial conditions (x1,0 and x2,0). The algorithm of coding
messages into initial parameters is presented below:

1. If n = 256 do Steps 2 - 4.
2. L11 = ctf([m1, ...,m64]), L21 = ctf([m65, ...,m128]).
3. L31 = ctf([m129, ...,m192]), L41 = ctf([m193, ...,m256]).
4. L1 = ctntf(L11, L21), L2 = ctntf(L31, L41).
5. If n = 512 do Steps 6 - 11.
6. L11 = ctf([m1, ...,m64]), L21 = ctf([m65, ...,m128]).
7. L31 = ctf([m129, ...,m192]), L41 = ctf([m193, ...,m256]).
8. L51 = ctf([m257, ...,m320]), L21 = ctf([m321, ...,m384]).
9. L31 = ctf([m385, ...,m448]), L41 = ctf([m449, ...,m512]).

10. L1 = ctntf(ctntf(L11, L21), ctntf(L31, L41)).
11. L2 = ctntf(ctntf(L51, L61), ctntf(L71, L81)).
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12. xl
1,0 = L1, xl

2,0 = L2.

Construction of ctf and ctnf functions is presented in Listing (1.1):

Listing 1.1. Functions used for mapping messages into Lorenz Attractor initial con-
ditions.

1 function r e s = c t f ( temp)
2 sum = 0 ;
3 tabS i ze = s ize ( temp , 2 ) ;
4 for i = tabS i ze :−1:1
5 sum = sum + (2ˆ( i − 1) ) ∗ temp( tabS i ze + 1 − i ) ;
6 end
7 while sum > 1
8 sum = sum / 10 ;
9 end

10 r e s = sum ;
11 end
12
13 function r e s = c t n t f ( a , b )
14 sum = a + b ;
15 while sum > 1
16 sum = sum / 10 ;
17 end
18 r e s = sum ;
19 end

As it can be seen, two hash lengths were considered, namely: n = 256 and n =
512. These lengths are the most popular ones in SHA-2 and SHA-3 certificated
hashing functions families. Third initial condition xl

3,1 was a random real number
from range [0, 1]. The model described in Equation (1) was solved with the usage
of the Runge-Kutta 4th Order method that can be represented as [18]:

k1 = ∆t ∗ f(t, xi) (2)

k2 = ∆t ∗ f(t+ ∆t

2
, xi +

k1
2
) (3)

k3 = ∆t ∗ f(t+ ∆t

2
, xi +

k2
2
) (4)

k4 = ∆t ∗ f(t+∆t, xi + k3) (5)

xi+1 = xi +

(
k1 + 2k2 + 2k3 + k4

6

)
(6)

where f is representing Equations described in (1), xi is a vector containing
solutions in all three dimensions (that is xi = [x1,i, x2,i, x3,i]) in i− th algorithm
iteration, t denotes a time in which calculation is done:

t = t0 + i ∗∆t (7)
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t0 is a moment when computation starts and is equal 0, and ∆t is denoting a
step (assumed time intervals in which computations are done), and was equal
to 0.1. The parameter i was an iterator in interval [0, 39999], thus always 40000
elements of solution in all three dimensions were generated. An example solution
of a Lorenz Attractor for the following initial parameters: ∆t = 0.1, x1,0 = 0.4,
x2,0 = 0.3, and x3,0 = 0.5 is presented in Figure (1).

Fig. 1. Example solution of a Lorenz Attractor.

4 ANNs Training and Testing with usage of Lorenz
Attractor

In this section, the process of training and testing of Feed-Forward ANNs is
described. Tested ANNs could be divided into two groups: returning 256 bits of
hash and returning 512 bits of hash (n ∈ {256, 512}). The detailed algorithm
of the whole process is presented below (with the assumption, that the value of
parameter n was already chosen).

1. Input data preparation. Two sets of data were generated:

INPUT train[i] = [b1, b2, ..., bn], i = 1, ..., 10000. (8)

INPUT test[i] = [b1, b2, ..., bn], i = 1, ..., 5000. (9)

Both INPUT arrays represented bits of messages (denoted as b ∈ {0, 1}).
In both cases, those bits were generated randomly and all created messages
were unique (within the particular matrix as well as between matrices).
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2. Target data preparation. To use the Lorenz Attractor, the formula presented
in Equation (1), messages from the training set (INPUT train) had to be
encoded as its initial conditions. Details related to the process of messages
compression are described in Section (3). As a result, each message could
have been represented as two real numbers from interval [0, 1]:

IC[i] = [XLi, Y Li], i = 1, ..., 10000;XLi, Y Li ∈ R∧XLi, Y Li ∈ [0, 1]. (10)

IC is denoting an initial condition array. The main advantage of such solu-
tion is the fact, that it enabled to algorithmically bond each message with at-
tractor’s formula via its first two initial conditions. With IC array prepared,
Lorenz Attractor formula was solved for each message from INPUT train

separately. That is, for i − th message, the initial conditions were set to:
[x1,0 = IC[i][0], x2,0 = IC[i][1], x3,0 = rand()], where rand() was a function
returning random real number from range [0, 1]. Then, the attractor was
solved with usage of Runge-Kutta 4th Order method (see Equations (2) -
(6)). The solution array for i− th message can be represented as:

V S′
k[i] = [xk,0, xk,1, ..., xk,39999], k ∈ {1, 2, 3}. (11)

In all three dimensions exactly 40000 elements of solution were generated.
To form a hash of i − th message, results had to be truncated. Truncated
vectors are presented in Equation (12).

V Sk[i] = [xk,1∗step+1000, xk,2∗step+1000, ..., xk,n∗step+1000], k ∈ {1, 2, 3}, (12)

where:

step = ⌊40000− 1000

n
⌋. (13)

The first 1000 elements were skipped in all cases to avoid small distances
(in the Euclidean sense) between solutions in 3D space. The step parameter
was calculated to cover the whole solution space, and to avoid situations
when two neighboring samples in a particular dimension are too close to
each other. Neighboring samples might also form an ascending or descending
slope, which was undesirable. After the truncation process, all vectors had to
be binarized to form hashes. The general binarization formula is presented
in Equation (14).

BS[i][j]k =

{
1 if V S[i][j]k ≥ AV Gk[j]
0 otherwise

(14)

WhereAV Gk[j] is the average value calculated from V Sk array (k ∈ {1, 2, 3}),
for each column j ∈ [1, 2, ..., n]. At this stage of computation, every message
from INPUT train array had three hashes candidates (each of length equal
to n) stored in arrays BS1, BS2 and BS3. To complete the target data
preparation only one array of hashes had to be chosen. To determine which
exactly should it be, statistical tests described in [19] were performed on
arrays BS1,2,3, and after analysis of results, only one was chosen.
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3. ANNs training process. For every n ∈ {256, 512} value, 7 networks were
created. The structure of each network was the same and could be repre-
sented as: I-HL-OL-O. I was an input layer of size n where input messages
were given. HL was a hidden layer containing sigmoid neurons. The number
of neurons in this layer varied in networks within one group. OL was an
output layer with n linear output neurons. O was a network output that
form a hash. All ANNs were trained with the usage of the Scaled Conju-
gate Gradient method (SCG) [12]. The training set consisted of two arrays:
INPUT train and TARGET train . The first one, INPUT train, was described
in the step 1. The target set was an array containing results obtained from
Lorenz Attractor that were truncated but not binarized (see Equation (12)).
Target array was selected in the process of statistical analysis of the three
binarized and truncated versions of arrays (see Equation (14), that is B.P.T.,
S.T., and C.T. tests described in [19] were performed. Selection of BSi array
in the statistical analysis process determined that V Si was considered as a
target set (TARGET train = V Si). Example results of such tests performed
on a different set of networks is presented in [21].

4. Output data generation. Each trained network was used to generate output
test data from INPUT test data. OUTPUT test data were used to prepare
binarization vectors used in the performance analysis process (see Section
(5)).

5. ANNs evaluation process. The performance of hashing network was tested
(in comparison with certificated standards). This was an independent stage
in which different sets of data were used. All details and results are described
in Section (5).

5 Analysis of performance of the hashing ANNs

In this section, analysis of the performance of hashing ANNs is presented as well
as a comparison of the performance of hashing ANNs with MATLAB imple-
mentation of SHA-256 and SHA-512 functions. The performance measure was
a time of hash computation. Hashes were calculated from data that differed in
size. Accordingly to [3], the computational cost of one feed-forward network pass
is O(W ), where W is the total number of weights. The training cost is equal to
O(W 2). Hashing algorithms have cost O(1) for small messages, and O(m) for
longer messages where m is the message length. This implicates directly from
their construction. Experiments’ details are presented below:

– MATLAB implementation of SHA-512 and SHA-256 presented in [7] was
used. This is the only implementation of these certificated hashing func-
tions officially published on the MathWorks website (which is an official file
exchange platform dedicated to MATLAB users).

– MATLAB functions were tested for the following data sizes: 512b, 100B,
1kB, 10kB, 50kB, 100kB, and 500kB. As a data here strings of appropriate
length were considered. Data representing 100kB and 500kB were not created
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directly as strings, but multiple hashing operations were performed on 50kB
data strings (2 times and 4 times, respectively).

– Hashing networks were tested for the following data sizes: 512b, 128B, 1kB,
10kB, 50kB, 100kB, 500kB, 1000kB, 5000kB, and 50000kB. As a data in
this scenario, arrays of bits representing messages were considered. Every
array had exactly n random bits in one row, and the appropriate number of
rows. Hashing 1000kB of data (and more) was tested as a multiple hashing of
500kB array. Performance measurements included the binarization process,
but in this scenario, a binarization vector was used, which can be represented
as:

BV = [AV G1, AV G2, ..., AV Gn], (15)

where AV Gi is the average value calculated from the i-th column of the
ANNs OUTPUT test array (for each network vector BV was generated sep-
arately).

– Experiments were conducted in the MATLAB2020 environment on the Per-
sonal Computer with 16GB RAM, and AMD Ryzen 5 2600 Six-Core Pro-
cessor (3.4 GHz).

– Notation L{n}N{HL} denotes hashing network train with usage of the
Lorenz Attractor, returning n bits of hash, and having HL neurons in the
hidden layer.

Results of the experiments are presented in Tables (1), (2), and (3).

Table 1. Performance of SHA-256 and SHA-512 implemented in MATLAB [7].

Data size (kB)
0.0625 0.098 1 10 50 100 500

Time of computation (sec.)

SHA-256 0.659 0.527 4.303 41.692 245.496 498.848 2436.608

SHA-512 0.926 0.832 6.999 64.525 358.101 716.745 3570.202

Table 2. Performance of Lorenz hashing networks returning 256 bits of hash.

Data size (kB)
0.0625 0.125 1 10 50 100 500 1000 5000 50000

Time of computation (sec.)

L256N128 0.012 0.009 0.008 0.012 0.024 0.043 0.179 0.352 1.825 18.667

L256N192 0.013 0.008 0.009 0.012 0.026 0.044 0.202 0.433 2.099 20.883

L256N256 0.013 0.010 0.010 0.014 0.031 0.058 0.270 0.505 2.436 24.665

L256N320 0.014 0.009 0.009 0.013 0.033 0.051 0.247 0.510 2.719 26.020

L256N384 0.015 0.011 0.011 0.014 0.036 0.054 0.280 0.580 2.864 28.548

L256N448 0.014 0.011 0.011 0.015 0.034 0.071 0.326 0.598 3,149 30.699

L256N512 0.019 0.013 0.013 0.018 0.040 0.078 0.342 0.705 3.795 37.023
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Table 3. Performance of Lorenz hashing networks returning 512 bits of hash.

Data size (kB)
0.0625 0.125 1 10 50 100 500 1000 5000 50000

Time of computation (sec.)

L512N256 0.016 0.015 0.013 0.018 0.036 0.054 0.239 0.456 2.297 23.585

L512N384 0.020 0.016 0.016 0.019 0.037 0.060 0.249 0.493 2.688 26.531

L512N512 0.022 0.019 0.020 0.026 0.045 0.068 0.323 0.649 3.564 34.054

L512N640 0.024 0.032 0.026 0.032 0.059 0.099 0.392 0.787 3.919 35.527

L512N768 0.024 0.023 0.025 0.029 0.063 0.106 0.464 0.854 4.259 42.69

L512N896 0.028 0.026 0.026 0.032 0.062 0.115 0.491 0.872 4.259 44.082

L512N1024 0.031 0.029 0.029 0.036 0.073 0.134 0.578 1.132 5.735 56.269

Results from the Table 2 are visualized in Figure (2), and from Table (3)
in Figure (3). Measurements were also approximated with the usage of a Bezier
curve to make them more readable. In both figures and for each network, it can
be observed that until about 50kB data size threshold, the time of computation
is growing slightly, and after this threshold, the growth takes the form of a linear
function. In all cases, the time of computation for networks with a bigger number
of neurons in the hidden layer is growing faster than for networks with a smaller
number of neurons (note that the logarithmic scale is used for both: OX and
OY axes). Networks returning 512 bits of the hash are also slower than networks
returning 256 bits of the hash.

In Figure (4) the performance of MATLAB implementation of SHA-256 and
SHA-512 (presented in [7]), and the performance of two fastest hashing networks
(one returning 256 bits of hash, and the second one returning 512 bits of hash)
is compared. As it can be seen, networks are more efficient in this scenario.
The time of computation for MATLAB SHA functions is also linear, however,
SHA-512 algorithm is less efficient than SHA-256.

Table (4) shows a comparison of hashing efficiency of all networks and both
MATLAB functions for popular data types. Assumed data sizes were [2]: 10kB
for a JPG image (JPG row), 19kB for a PDF file (PDF row), 3.5MB for an MP3
file or an Ebook (MP3 row), 4GB for a DVD movie (DVD row), and 23GB for
a Blue-Ray Movie (BRM row). Times presented in this table were not directly
calculated, but interpolated with the usage of the linear interpolation performed
on data presented in previous tables in this section. The obtained results show
clearly that the cost of hashing using the ANN-based algorithms seems feasible
even for very large commonly used files while comparing the obtained results with
the classic implementation makes the latter much slower or actually unacceptable
(even counted in days).

6 Conclusions

In this article, the concept of hashing artificial neural networks trained with the
usage of the Lorenz Attractor was presented. The research was focused on the
assessment of the performance of the proposed hash generators.
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Fig. 2. Performance of hashing networks returning 256 bits of hash.

Fig. 3. Performance of hashing networks returning 512 bits of hash.
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Fig. 4. Comparison of performance of the fastest hashing networks returning 256 bits,
and 512 bits of hash, and MATLAB implementation of SHA-256, and SHA-512.

All the discussed networks had one hidden layer with sigmoid neurons and an
output layer with n linear neurons (where n was denoting a hash length). Two
values of the n parameter were considered, that is 256 and 512. For both values
of n, seven networks were created that differed in the number of neurons in the
hidden layer. All networks were trained with the usage of the Scaled Conjugate
Gradient method. The training set consisted of random messages (input data)
and an appropriately prepared target set (hashes created from input messages
with usage of the Lorenz Attractor).

ANNs presented significantly better time efficiency than SHA-256, and SHA-
512 implemented in MATLAB. One of the biggest advantages of the proposed
solution is a potentially scalable output of networks. The length of the returned
hash can be established during the training process with a one-bit precision.
Networks are also easy to replace, thus compromising one network can be easily
fixed via training a new one.

Comparing the efficiency of our algorithms vs. the efficiency of MATLAB
implementations of classic hashing algorithms showed, that for large, commonly
used files, hashing times are still feasible for the ANN-based approach (reach-
ing hours), while classic SHA implementations runtimes became unacceptable
(reaching thousands of days).

Future work is aimed at including:

– testing different networks structures,
– testing different chaotic series,
– testing more values of n parameter,
– performing statistical tests as presented in [19]. Results of these tests will

be also compared with results of the same tests performed on the certifi-
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Table 4. Efficiency of popular data files hashing.

Time (sec.)
L256N128 L256N192 L256N256 L256N320 L256N384 L256N448 L256N512

JPG 0.002 0.011 0.012 0.020 0.012 0.021 0.017

PDF 0.005 0.015 0.017 0.024 0.018 0.027 0.023

MP3 1.336 1.503 1.774 1.879 2.053 2.215 2.663

DVD 1565.721 1751.245 2068.131 2182.298 2394.243 2574.439 3105.545

BRM 9002.903 10069.623 11891.720 12548.144 13766.865 14802.953 17856.842

L512N256 L512N384 L512N512 L512N640 L512N768 L512N896 L512N1024

JPG 0.006 0.012 0.028 0.075 0.027 0.015 0.042

PDF 0.010 0.017 0.034 0.081 0.035 0.023 0.052

MP3 1.691 1.908 2.461 2.612 3.077 3.164 4.063

DVD 1977.860 2225.143 2855.949 2977.090 3579.241 3696.065 4718.253

BRM 11372.694 12794.540 16421.609 17117.942 20580.548 21252.342 27129.811

Time (different measure units)
MATLAB SHA-256 MATLAB SHA-512

JPG 49.362 sec. 70.817 sec.

PDF 93.248 sec. 135.104 sec.

MP3 4.855 hours 7.111 hours

DVD 236.715 days 346.754 days

BRM 1361.110 days 1993.838 days

cated standards. A suite of tests presented in [19] may be also extended, for
example by the Floyd-Marshall algorithm.

The example use case is presented in [21]. In the scenario described in [21], hash-
ing networks are used to perform additional data integrity checking operations in
the cloud environment. Because of variable output hash length and virtual ma-
chines’ idle time, hash generation in such system has a very small computational
overhead.
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