
Neural-Network based Adaptation of Variation
Operators’ Parameters for Metaheuristics⋆

Tymoteusz Dobrzański[0000−0001−5156−8585], Aleksandra
Urbańczyk[0000−0002−6040−554X], Tomasz

Pe lech-Pilichowski[0000−0003−2212−7806], Marek
Kisiel-Dorohinicki[0000−0002−8459−1877], and Aleksander

Byrski[0000−0001−6317−7012]

AGH University of Science and Technology
tdobrzanski@student.agh.edu.pl,{aurbanczyk,tomek,doroh,olekb}@agh.edu.pl

Abstract. The paper presents an idea of training an artificial neural
network a relation between different parameters observed for a popula-
tion in a metaheuristic algorithm. Then such trained network may be
used for controlling other algorithms (if the network is trained in such
way, that the knowledge gathered by it becomes agnostic regarding the
problem). The paper focuses on showing the idea and also provides se-
lected experimental results obtained after applying the proposed algo-
rithm for solving popular benchmark problems in different dimensions.

Keywords: adaptation of variation operators’ parameters · evolution-
ary algorithms · neural networks.

1 Introduction

Maintaining the balance between exploitation and exploration in metaheuristic
is an important task in order to avoid premature loss of convergence and getting
stuck in a local extremum by a population processed. The exploitation and
exploration are rather volatile notions, but can be approximated by measuring
the diversity, thus based on diversity one might propose way for controlling
the search of a metaheuristic algorithm in order to avoid pitfalls (like already
mentioned premature convergence). Different approaches were proposed in order
to adapt the parameters of variation operators (based on dedicated rules, or e.g.
modifying the parameters of mutation by the same algorithm which was used
for solving the problem), but the intuition points out that the actual relation
between different parameters observed in the population and the features of
exploitation/exploration is complex.

⋆ The research presented in this paper has been financially supported by: Polish Na-
tional Science Center Grant no. 2019/35/O/ST6/00570 “Socio-cognitive inspirations
in classic metaheuristics.” (A.U.) and Polish Ministry of Education and Science funds
assigned to AGH University of Science and Technology (T.P-P., M.K-D., A.B.)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_47

https://dx.doi.org/10.1007/978-3-031-08754-7_47


2 T. Dobrzański et al.

Why don’t we use ANNs (Artificial Neural Networks) to grasp this complex
relation and provide the metaheuristic with the knowledge required for reason-
able (based on many experiments, not arbitrarily chosen rules) adaptation of
the variation operators parameters? This is actually the idea proposed in this
paper: to find a way for train an artificial neural network, gathering necessary
knowledge and being able to reuse this knowledge in a similarly-defined (but not
the same) problems.

In the course of this paper, after referring to the state of the art regarding
neural networks and adaptation of the variation operators of metaheuristics, we
discuss the proposed algorithm clearly, then show the experimental setting and
provide the insight into first efficacious experiment results, finally we conclude
our paper and point out the future work directions.

2 Neural networks in prediction and control

For prediction and control purposes a number of methods and approaches can
be exploited. The goal is to perform reliable data processing based on input
data, initially preprocessed. An application of a predictor is based on adjusting
its parameters (in a fixed or adaptive way). One of prediction approaches is to
use neural networks instead of numerical formulas. Considering general archi-
tecture of neural networks, a neuron processes a set of input data, according
to fixed weights and a bias. Supervised or unsupervised training is a process of
obtaining network parameters. For example, simple time series one-step-ahead
prediction with a neural network containing one input layer is comparable to a
linear regression, nevertheless, prediction can be performed based on results of
data classification.

A number of neural models applied for prediction purposes have been pro-
posed. The presented approaches differ in architectures, objective functions or a
paradigm used [6]. An application of a model relies on the prediction attributes,
time-horizon and input data quality (sampling, consistency, statistical and fre-
quency characteristics). For a given time horizon, predictions – as one step or
multistep - can be computed as point forecasts (results in point estimates of
values for a fixed horizon) or probabilistic ones (the distribution of future data
is produced). For prediction purposes Multilayer Perceptron (MLP) networks,
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN)
can be used [8], [29]. MLPs are a class of backpropagation neural networks used
for prediction and regression of structured input data. A key feature is an ability
of mapping from input datasets to output variables. MLPs can be used i.a. for
time series classification and prediction – as mapping from input data to output
data [27].

Neural networks (NNs) are applicable for dynamic process control (in par-
ticular, in industrial applications) [30, 22] where processes are complex and they
have to be operated with a small number of operators (computer systems are
widely used for a process control and supervision) and automatic adjusting val-
ues of processes is required. Process control is based on data processing (i.a.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_47

https://dx.doi.org/10.1007/978-3-031-08754-7_47


Neural-Network based Adaptation. . . 3

set points, estimated states) aimed at obtaining present and future values, for
example for adaptive control purposes. Prediction of a system future behavior is
essential, and a set of constraints is satisfied (in particular, in real-time systems
[23]). Model Predictive Control (MPC) is focused on finding (computing) control
by solving optimization problem in a loop according to predicted output (the be-
havior of the system) and fixed time-horizon. Neural networks can be exploited
to adjust parameters of controllers of applied algorithms based on analytical
calculations due to their limitations arising from a large number of variables,
parameters and control loops as well as a need of performing computation in a
real time systems according to specified time limits. NNs can be developed for
solving optimal control problems and for tasks requiring the use of control loop,
in particular – as NN-MPC (Neural Network based Model Predictive Control).

3 Adaptation of evolutionary search parameters

In the group of evolutionary algorithms (Genetic Algorithms, Evolution Strate-
gies and Evolutionary Programming and many hybridised versions of them) the
key to success is good parameters setting. In the classic versions of them certain
values for parameters (selection, mutation and crossover) were set on the begin-
ning, very often by trial and error. Many researchers realised that setting them
without the knowledge about the structure of the problem lead to sub-optimal
solutions and result in another trial (known as “parameter tuning problem” [28]).
Besides other solutions [13], the idea of parameter control grew on popularity.
[17]. It states that instead of tuning the parameters in advance, these can be
observed and adjusted during the run. This shift had many advantages, from
releasing researchers from duty of initial parameters’ setting, to broadening the
spectrum of problems that can be solved by EAs (Evolutionary Algorithms).

The overview and classification of all possibly controlled parameters is ex-
tensively described in [17]. One of the axis of the classification is whether the
method of control is dependent on the parameters itself or it is rather generic
one.

There are numerous control methods intended for specific parameters. They
can be based on one or few parameters combined. One of the most explored
method related to one parameter is controlling and adaptation of mutation step
size (σ), originally employed in ES (Evolution Strategies). The early ideas circled
around modifying the step size proportionally to the distance to the optimum
[26],[3] or increasing/decreasing it by 0.2 accordingly to the success rate (one-
fifth rule) [25],[5]. The creation of the self-adaptive mutation was the next great
leap in adaptive ESs: the mutation parameters (both the step-size and the co-
variance matrix) are tied to each individual and are also subject to mutation
[9]. However, there is an algorithm that outperforms all of them and it is based
on the adaptation of the full covariance matrix [16],[14]. The core idea behind
CMA-ES (Covariance Matrix Adaptation ES) is to use the algorithm’s route to
deterministically update the various mutation parameters. If the algorithm has
taken a sequence of steps in the same direction, the step size should be increased

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_47

https://dx.doi.org/10.1007/978-3-031-08754-7_47


4 T. Dobrzański et al.

to allow for greater steps and faster processing. The covariance matrix update
is affected by similar ideas. Aside from single-parameter techniques, there have
been numerous attempts to improve EAs by creating ways for controlling mul-
tiple parameters at the same time (e.g. [4],[19]. However, they usually change
components other than just variation parameters, therefore a detailed descrip-
tion is beyond the scope of this article.

The group of generic parameter control methods is the one with which we
associate our work. In the recent extensive review of those methods by Gomes
Pereira De Lacerda et al. [15] there are two main groups of general parameter
controllers - one based on reinforcement learning and the other on prediction of
probability of success for parameters at each point of time. The other attempts
to design generic parameter control were based on Dynamic Programming under
Markov assumption [2], fuzzy logic [18] and Bayesian networks [10]. We found
no evidence of attempting to incorporate ANN as a generic controller for EA in
the review or through our own research.

4 ANN-based adaptation of evolutionary search

The idea of adaptating the parameters of metaheuristics’ variation operators
is not new, and we have cited several seminal papers in Section 3 to give the
background on this. Observing the state-of-the-art algorithms we stated, that
those approaches usually utilize the information perceived in the population,
based on fixed rules. A notable approach is the one applied in evolution strate-
gies, where the parameters of the probability distribution of mutation undergoes
similar evolution as the genetic information contained in the individuals. Not
degrading any of the approaches, we would like to express our deep conviction,
that apparently, a relation between the observations of certain parameters of
the population and the current (desired) parameters of the variation operators
(which would help in attaining balance between exploration and exploitation) is
complex. Thus, instead of assuming certain fixed rules, we propose to teach a
dedicated neural network in a way agnostic to the actual problem, in order to
use the knowledge gathered in the network to control the variation operator’s
parameters for similar problems.

The idea of the proposed approach is shown in Fig. 1. The idea consists in
training a dedicated neural network, to learn the complex relation between a
number of different population-related parameters and the parameters of the
variation operators. The presented approach assumes that the neural network is
trained in a supervised way. The trained data are the selected parameters of the
population (e.g. diversity-related measures), and they are paired with the desired
parameters of the variation operators (e.g. probability of applying crossover and
mutation, mutation range).

In this paper we have focused on supervised training (in the future we will also
consider unsupervised approaches). Now, in order to train the network, which
should grasp the relation between the observed parameters and the parameters of
the variation operators, we assume that those parameters (in the discussed case)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_47

https://dx.doi.org/10.1007/978-3-031-08754-7_47


Neural-Network based Adaptation. . . 5

Selection

Crossover

Mutation

Initialization

Population

E
vo

lu
tio

n

O
bs

er
va

tio
n 

of
 

pa
ra

m
et

er
s

P
ar

am
et

er
s 

of
 v

ar
ia

tio
n 

op
er

at
or

s

Fig. 1: Neural adaptation of variation operators’ parameters

should have certain fixed relation with the exploration/exploitation phenomena.
We assume, that an arbitrarily chosen function should, in the training phase,
describe this relation (as a reasonable one) and become the template which will
be later generalized by the network, applied to different problems. The function
used in the presented approach is actually sigmoid-like (the details are given in
Section 5) starting with high values, and gradually descending to lower values
(yet not zero), assuming that a certain loss of diversity must be observed (as
the population gradually ceases to show a “monte-carlo like” behavior and fo-
cuses on exploitation, still having certain exploration capabilities). The idea of
training the network is shown in Fig. 2. Thus the network is trained on several

Population

O
bs

er
va

tio
n 

of
 

pa
ra

m
et

er
s

1

generation

Assumed progress of 
parameters in training

current 
moment

current 
value

–

training

Fig. 2: Training the network

selected benchmark problems, different chosen functions can be used for showing
the progress of the parameters in training, and all the training related parame-

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_47

https://dx.doi.org/10.1007/978-3-031-08754-7_47


6 T. Dobrzański et al.

ters are prepared in a way as agnostic as possible to a considered problem, the
actual shape and dimension of the search space etc. so the knowledge gathered
in the network (regarding the relation between the parameters and the variation
operators’ parameters) can be reused.

5 Experimental results

In our experiments we have used as our metaheuristic algorithm a classic version
of evolution strategy (µ, λ) algorithm applied to solving real-value optimization
problems [20]. We have used apopulation of 100 individuals and as a stopping
condition – reaching 10000 evaluations of the fitness function. We have repeated
each experiment 1000 times, except results shown in fig 3 and 4, where we show
result from single algorithm run.

Artificial Neural Networks (feed-forward fully connected Neural Network,
with Rectified Linear Unit activation in hidden layers, and sigmoid activation in
output layer) used in our work were built and trained using TensorFlow frame-
work [1]. Evolution Strategy was implemented based on jMetalPy framework [7].
The benchmarks and ANN training process were evaluated on Windows based
machine with AMD Ryzen 5 3600 (3.59GHz) CPU, Nvidia GeForce GTX 1650
GPU and 16 GB of RAM memory.

The observed parameters of the population (after each generation) were:

– Current evaluation number.
– Standard deviation diversity (stddev) [31] - standard deviation of fitness

values across population (P). Computed as:

stddev(P ) =

√∑n
i=1(fi − f)

n− 1

Where: P – population, n – population size, fi – fitness value of i individual,
f – mean fitness value.

– Phenotype diversity (ptype) [31] - number of unique values (U) of fitness
across population. Computed as:

ptype(P ) =
U − 1

n− 1

Where: U – number of unique fitness value, n – population size This value
was not used as input for ANN.

– Distance diversity (distance) - mean distance between all pairs of individuals.
Computed as:

distance(P ) =
2

(n− 1)n

n−1∑
i=1

n∑
k=i+1

dist(Pi, Pk)

Where: dist – distance metric, Pi – genotype of i individual, n – population
size. We can use different distance metric (e.g. Hamming for binary genotype)
to compute this type of diversity measure.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_47

https://dx.doi.org/10.1007/978-3-031-08754-7_47


Neural-Network based Adaptation. . . 7

– Moment of Inertia diversity (MoI) [21] - calculating system moment of inertia
to define diversity. Computed as:
Centroid (central point of system) defined as vector C = (c1, c2, . . . , cd):

ci =

∑n
j xij

n

Where: xij – value of i gen in j individual, n – population size
Moment of Inertia:

MoI(P ) =

d∑
i

n∑
j

(xij − ci)

Where: xij – value of i gen in j individual, n – population size, d - problem
dimensionality. In Artificial Neural Network as an input value, we used:

Input = MoIc −MoIr

Where: MoIc – MoI in current population, MoIr – desired MoI diversity,
calculated from sigmoid function multiplied by starting value of MoI.

– Current Mutation probability.
– Current Mutation range – determines range in which parameter can mutate
– Current Crossover probability.
– Current Crossover distribution index – parameter used in Simulated binary

(SBX) crossover [11], to determine how far from parents, children’s will be
placed. Higher value means closer placement.

– Percentage loss of MoI diversity from start of algorithm runtime.
– Percentage loss of MoI diversity from last generation.

It is important to notice that almost all mentioned parameters are highly depen-
dent on selected problem. Size of fitness function space or values range will have
impact on computed parameters as well as prepared model. In order to make
trained Neural Networks problem agnostic, diversity measurements have to be
normalized. In our work, selected values were normalized by starting value of
that parameter. This solution allow values to exceed 1, but it’s not considered
as a problem for trained ANN.

The biggest challenge in our work, was to create problem agnostic Artificial
Neural Network, that can be used on any optimization function in any dimesion-
ality, despite fact that selected parameters are size and dimension depended. For
example MoI diversity in Ackley problem reaches 110 units, but in Griewank
functions, that values can exceed 1400 units (in 100 dimensions). To achieve
agnostic model we used normalization by starting value, that may not be opti-
mal solution, but currently it works fine. In further work we will try to propose
another, more efficient, normalization algorithm. Taking this information into
consideration all size dependent parameters (e.g. Distance diversity, Standard
deviation diversity) were normalize to create input in range [0, 1], other values
that does not depend on problem (e.g. variation operators, percentage loss of
MoI diversity) were used without preprocessing.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_47

https://dx.doi.org/10.1007/978-3-031-08754-7_47


8 T. Dobrzański et al.

We have focused on popular benchmark functions: Ackley, Griewank, Ras-
trigin, Rosenbrock, Schwefel and De Jong [12]. The Ackley function (in 100
dimensions) was first used for training the network. All the problems were set
in 100 dimensions except Rosenbrock which was set in 10, 20, 50, 100, 200 and
500 dimensions.

The parameters of the sigmoid function sigm(x) = 1
1+ec1∗x−c2

describing the

progress of the variation operators’ parameters were: c1 = 10
me

, me - number
of maximum evaluations, c2 = 5. Values range of this variant of sigmoid func-
tion is [0.99, 0.01]. That should demonstrate balance between exploration and
exploitation phase of algorithm.

We have started our experiments with training the selected feed-forward
networks having 10 input neurons observing the above-mentioned parameters, 2
output neurons producing the probabilities of crossover and mutation and

– Variant 1 - Hidden Layers size: 24-64-92-24-56-32-24-12
– Variant 2 - Hidden Layers size: 36-64-128-64-18-32-24-12
– Variant 3 - Hidden Layers size: 36-64-128-64-18-32-24-12 It has same hidden

size that Variant 2, but training dataset was prepared in different way. Nor-
mally variations operators were adapted by sigmoid function, in this case
they were generated randomly after each algorithm generation.

– Variant 4 - Hidden Layers size: 36-64-128-64-6-32-24-12.

We have used Ackley function for training. Hidden size was set up using trial and
error method. Training dataset was prepared by evaluating 2000 runs of algo-
rithm with adaptive mutation and crossover probability parameters and saving
those mentioned above parameters.

Artificial Neural Network training parameters:

– Dataset size: 200000 records
– Validation dataset size: 20% of dataset
– Epochs: 4000
– Batch size: 512
– Learning rate: 0.001
– Optimizer: Adam
– Loss function: Mean Square Error (mse) [24]. Computed as:

mse =

∑n
i=1(yi − λ(xi))

2

n

Where: n - number of outputs, yi - true value, λ(xi) - model output.

The trained network was evaluated on the Ackley benchmark (applied to
adapt the parameters of the variation operators) and we provide the insight into
the process of optimization and the final values obtained at the end of computing.

In Fig. 3 the progress of the best fitness observed for different versions of
neural network adapting the parameters of the variation operators is shown.
Apparently the idea of ANN-controlled adaptation taught based on previously
given sigmoid progress function works – the baseline algorithm (without the

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_47

https://dx.doi.org/10.1007/978-3-031-08754-7_47


Neural-Network based Adaptation. . . 9

adaptation) does not get so close as the algorithms using adaptation. Moreover,
we have also tested the algorithm with adaptation of variation parameters with-
out the neural network used (so it was actually the algorithm used for teaching
the ANNs – the results were similar as in the case of the baseline algorithm (see
Fig. 5a, Adaptive ES version of the algorithm). Thus we claim the idea makes
sense and delve into more detailed experiments. Let us check, what is actually

Fig. 3: Best fitness dependent on the number of evaluation, Ackley, 100 dimen-
sions

happening in the course of computation, how (and if at all) does the ANN work
(see Fig. 4). One can see that the actual relation between the observed param-

(a) Input (b) Output

Fig. 4: Monitoring input and output parameters for the ANN used, Ackley 100
dimensions

eters and the output (probabilities of mutation and crossover) is complex (as
expected). Mutation and crossovers observed at the input are similar to the ones

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_47

https://dx.doi.org/10.1007/978-3-031-08754-7_47


10 T. Dobrzański et al.

observed at the output (as these values are in fact controlled by the network).
One can observe the increasing mutation probability in the beginning of com-
putation, then for some time the crossover becomes the more frequently used
operator, however finally the crossover is apparently discarded (at the moment
when the measurement of MoI-From-Last becomes stable, later no peaks are ob-
served in the graph showing this measure). This situation seems to be normal,
after some time in this experiment the diversity of the search is lost, and because
of that the mutation is used for escaping the local minimum (probably attained),
in other words, to escape the situation when most (or all) of individuals are very
similar.

In Fig. 5a we can observe the final values obtained at the end of computing
for Ackley problem. It is easy to see, that the neural versions of the algorithm
are significantly better than the version without the neural adaptation. At the
same time, in Fig. 5b we can observe the final results obtained for Griewank
problem. This time there is one neural network which turned out to be the best
in adaptation. This is completely normal and highly possible situation, that
only one network prevailed. Usually choosing the optimal parameters of neural
network is realized in a tedious process of trial and error. Apparently the most

(a) Ackley (b) Griewank

Fig. 5: Final fitnesses for Ackley and Griewank problems, 100 dimensions

complex problem is Schwefel (see Fig. 6a, as the results are far from optimum,
however still one network prevails in this case. This might be an apparent case
for more difficult problems, that only one network will prevail. Actually this
observation is confirmed when observing the final results obtained for Sphere
function (Fig. 6b), which is the easiest problem considered (this is a convex
function). This time again the ANN-adapted versions of the algorithm prevail
and it is difficult to tell, which structure of the network was the best.

Finally let us check what happens if we change the dimensionality of the
problem. Thus let us focus on Rosenbrock problem in different dimensions (see
Fig. 7). Now it is easy to see that again, for simpler problems (20 and 50 di-
mensions) the algorithms show similar efficacy, while for more difficult problems

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_47

https://dx.doi.org/10.1007/978-3-031-08754-7_47


Neural-Network based Adaptation. . . 11

(a) Final fitness for different ANNs, Schwe-
fel, 100 dimensions

(b) Final fitness for different ANNs,
Sphere, 100 dimensions

Fig. 6: Final fitnesses for Schwefel and Sphere problems, 100 dimensions

(200 and 500 dimensions) one or several algorithms prevail. Moreover – it seems
that the adaptation helped a lot in the case of those more difficult problems
(the results are much closer to the global optimum than in the case of 20 and
50), at the same time acting mediocre (or being more or less useless) for simpler
problems.

6 Conclusion

We have presented a novel approach for adaptation of variation operators’ pa-
rameters in metaheuristic algorithms, based on artificial neural networks. The
idea consists of training the network on dedicated benchmark problems, working
on the parameters of the search (and of the network) to make the knowledge
gathered by the network agnostic to the problem, search space etc. and applying
such network to adapt the parameters in other problems. We believe that the
results presented are interesting, but we are sure that much more is to be done
to further tune the algorithm and generalize it. Our plans for the future research
are as follows:

– We have used a sigmoid function as a function showing the rational progress
of the variation parameters – we will try experimenting also with other func-
tions, to further explore our assumptions related the reasonable control over
exploration and exploitation.

– We have followed the supervised learning paradigm, in the future we will
also try to use unsupervised learning (e.g. hebbian learning) in order to
avoid assuming concrete parameter progress functions.

– We will try to explore the relation between the network and the number
of evaluation of the fitness function, perhaps this relation might be also
generalized or omitted.

– In the presented research we have used one ANN for both parameters of
variation operators, this was a simplification – we are sure we should apply
different ANNs for each parameter controlled.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_47

https://dx.doi.org/10.1007/978-3-031-08754-7_47


12 T. Dobrzański et al.

(a) 20 (b) 50

(c) 200 (d) 500

Fig. 7: Final fitnesses for Rosenbrock for different dimensions (20,50,200,500)

– We will aim at attaining agnostic knowledge gathered in the network in order
to be able to easily reuse the trained network.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),
https://www.tensorflow.org/, software available from tensorflow.org

2. Aine, S., Kumar, R., Chakrabarti, P.: Adaptive parameter control of evolutionary
algorithms under time constraints. In: Applications of Soft Computing, pp. 373–
382. Springer (2006)

3. Auger, A., Le Bris, C., Schoenauer, M.: Dimension-independent convergence rate
for non-isotropic (1, λ) - es. In: Proceedings of the 2003 International Conference on
Genetic and Evolutionary Computation: PartI. p. 512–524. GECCO’03, Springer-
Verlag, Berlin, Heidelberg (2003)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_47

https://dx.doi.org/10.1007/978-3-031-08754-7_47


Neural-Network based Adaptation. . . 13

4. Bäck, T., Eiben, A.E., van der Vaart, N.A.: An emperical study on gas “without
parameters”. In: International conference on parallel problem solving from nature.
pp. 315–324. Springer (2000)

5. Bassin, A., Buzdalov, M.: The 1/5-th rule with rollbacks. Pro-
ceedings of the Genetic and Evolutionary Computation Confer-
ence Companion (Jul 2019). https://doi.org/10.1145/3319619.3322067,
http://dx.doi.org/10.1145/3319619.3322067

6. Benidis, K., Rangapuram, S., Flunkert, V., Wang, B., Maddix, D., Turk-
men, A.C., Gasthaus, J., Bohlke-Schneider, M., Salinas, D., Stella, L., Callot,
L., Januschowski, T.: Neural forecasting: Introduction and literature overview.
https://arxiv.org/abs/2004.10240 (2020)

7. Beńıtez-Hidalgo, A., Nebro, A.J., Garćıa-Nieto, J., Oregi, I., Del
Ser, J.: jmetalpy: A python framework for multi-objective optimiza-
tion with metaheuristics. Swarm and Evolutionary Computation 51,
100598 (2019). https://doi.org/https://doi.org/10.1016/j.swevo.2019.100598,
https://www.sciencedirect.com/science/article/pii/S2210650219301397

8. Botalb, A., Moinuddin, M., Al-Saggaf, U.M., Ali, S.S.A.: Contrasting Convolu-
tional Neural Network (CNN) with Multi-Layer Perceptron (MLP) for big data
analysis. In: 2018 International Conference on Intelligent and Advanced System
(ICIAS). pp. 1–5 (2018). https://doi.org/10.1109/ICIAS.2018.8540626

9. Bäck, T.: Self-adaptation in genetic algorithms. In: Proceedings of the First Euro-
pean Conference on Artificial Life. pp. 263–271. MIT Press (1992)

10. Corriveau, G., Guilbault, R., Tahan, ·.A., Sabourin, ·.R.: Bayesian network as an
adaptive parameter setting approach for genetic algorithms. Complex & Intelligent
Systems 2, 1–22 (2016). https://doi.org/10.1007/s40747-016-0010-z

11. Deb, K., Agrawal, R.B., et al.: Simulated binary crossover for continuous search
space. Complex systems 9(2), 115–148 (1995)

12. Digalakis, J., Margaritis, K.: An experimental study of benchmarking functions
for evolutionary algorithms. International Journal of Computer Mathemathics 79,
403–416 (2002)

13. Eiben, A., Smit, S.: Parameter tuning for configuring and analyzing evolu-
tionary algorithms. Swarm and Evolutionary Computation 1, 19–31 (03 2011).
https://doi.org/10.1016/j.swevo.2011.02.001

14. Eiben, A.E., Smith, J.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Param-
eter control in evolutionary algorithms. Studies in Computational Intelligence
54(January), 19–46 (2007)

15. Gomes Pereira De Lacerda, M., Filipe De Araujo Pessoa, L., Buar-
que De Lima Neto, F., Ludermir, T.B., Kuchen, H.: A systematic lit-
erature review on general parameter control for evolutionary and swarm-
based algorithms. Swarm and Evolutionary Computation 60, 100777 (2021).
https://doi.org/10.1016/j.swevo.2020.100777, www.elsevier.com/locate/swevo

16. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions
in evolution strategies: the covariance matrix adaptation. In: Proceedings of
IEEE International Conference on Evolutionary Computation. pp. 312–317 (1996).
https://doi.org/10.1109/ICEC.1996.542381

17. Karafotias, G., Hoogendoorn, M., Eiben, A.E.: Parameter control in evolutionary
algorithms: Trends and challenges. IEEE Transactions on Evolutionary Computa-
tion 19(2), 167–187 (2015). https://doi.org/10.1109/TEVC.2014.2308294

18. Maturana, J., Saubion, F.: On the design of adaptive control strategies for evolu-
tionary algorithms. In: International Conference on Artificial Evolution (Evolution
Artificielle). pp. 303–315. Springer (2007)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_47

https://dx.doi.org/10.1007/978-3-031-08754-7_47


14 T. Dobrzański et al.

19. McGinley, B., Maher, J., O’Riordan, C., Morgan, F.: Maintaining healthy popula-
tion diversity using adaptive crossover, mutation, and selection. IEEE Transactions
on Evolutionary Computation 15(5), 692–714 (2011)

20. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Springer (1996)

21. Morrison, R., De Jong, K.: Measurement of population diversity. vol. 2310, pp.
31–41 (10 2001)

22. Narendra, K.S., Parthasarathy, K.: Neural networks and dynamical sys-
tems. International Journal of Approximate Reasoning 6(2), 109–131 (1992).
https://doi.org/10.1016/0888-613X(92)90014-Q

23. Paternain, S., Morari, M., Ribeiro, A.: Real-time model predictive con-
trol based on prediction-correction algorithms. In: 2019 IEEE 58th Con-
ference on Decision and Control (CDC). pp. 5285–5291. IEEE (2019).
https://doi.org/10.1109/CDC40024.2019.9029408

24. Sammut, C., Webb, G.I. (eds.): Mean Squared Error, pp. 653–653. Springer US,
Boston, MA (2010)

25. Schumer, M., Steiglitz, K.: Adaptive step size random search. Au-
tomatic Control, IEEE Transactions on AC13, 270–276 (07 1968).
https://doi.org/10.1109/TAC.1968.1098903

26. Schwefel, H.P.: Numerical Optimization of Computer Models. John Wiley & Sons,
Inc., USA (1981)

27. Shiblee, M., Kalra, P.K., Chandra, B.: Time series prediction with multilayer
perceptron (MLP): A new generalized error based approach. In: ”Köppen, M.,
Kasabov, N., Coghill, G. (eds.) Advances in Neuro-Information Processing. pp.
37–44. Springer Berlin Heidelberg (2009)

28. Smit, S.K., Eiben, A.E.: Comparing parameter tuning methods for evolutionary
algorithms. In: 2009 IEEE congress on evolutionary computation. pp. 399–406.
IEEE (2009)

29. Wang, J., Li, X., Li, J., Sun, Q., Wang, H.: NGCU: A new RNN
model for time-series data prediction. Big Data Research 27, 100296 (2022).
https://doi.org/doi.org/10.1016/j.bdr.2021.100296

30. Werbos, P.J.: Consistency of HDP applied to a simple reinforcement learning
problem. Neural Networks 3(2), 179–189 (1990). https://doi.org/10.1016/0893-
6080(90)90088-3

31. Zhu, K.Q., Liu, Z.: Population diversity in permutation-based genetic algorithm.
In: European Conference on Machine Learning. pp. 537–547. Springer (2004)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_47

https://dx.doi.org/10.1007/978-3-031-08754-7_47

