
Recursive Singular Value Decomposition
compression of refined isogeometric analysis
matrices as a tool to speedup iterative solvers

performance.

Mateusz Dobija1[0000−0003−4557−3534] and Anna Paszynska1[0000−0001−7766−6052]

Faculty of Physics, Astronomy and Applied Computer Science,
Jagiellonian University, Poland
anna.paszynska@uj.edu.pl

Abstract. The isogeometric analysis (IGA) uses higher-order and con-
tinuity basis functions as compared to the traditional finite element
method. IGA has many applications in simulations of time-dependent
problems. These simulations are often performed using an explicit time-
integration scheme, which requires the solution of a system of linear
equations with the mass matrix, constructed with high-order and conti-
nuity basis functions. The iterative solvers are most commonly applied
for large problems simulated over complex geometry. This paper focuses
on recursive decomposition of the mass matrix using the Singular Value
Decomposition algorithm (SVD). We build a recursive tree, where sub-
matrices are expressed as multi-columns multiplied by multi-rows. When
we keep the mass matrix compressed in such a way, the multiplication
of a matrix by a vector, as performed by an iterative solver, can be per-
formed in O(Nr) instead of O(N2) computational cost, where N is the
number of rows of input matrix, r is the number of singular values bigger
than given value. Next, we focus on refined isogeometric analysis (rIGA).
We introduce the C0 separators into IGA submatrices and analyze the
SVD recursive compression and computational cost of an iterative solver
when increasing the patch size and the order of B-spline basis functions

Keywords: refined isogeometric analysis · hierarchically compressed ma-
trix · matrix-vector multiplication · iterative solvers.

1 Introduction

Isogeometric analysis (IGA) [1–3] is a generalization of the traditional finite
element method into higher-order and continuity basis functions. It has many
applications in the simulation of time-dependent problems, from wind turbine
simulations [4], drug transport [5], to tumor growth simulations [6, 7]. The refined
isogeometric analysis [8–10] has been proposed to reduce the computational cost
of IGA while keeping the high accuracy of IGA solutions. The time-dependent
IGA solvers often rely on explicit dynamics formulations [6, 7, 11]. In the explicit

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_46

https://dx.doi.org/10.1007/978-3-031-08754-7_46


2 F. Author et al.

dynamics solvers, the system of linear equations with mass matrix constructed
from IGA basis functions is solved in every time step. For large problems, itera-
tive solvers are often employed [12]. In this paper, we discuss an algorithm for
recursive compression of matrices. As an example, we consider the IGA mass ma-
trix as applied in time-dependent simulations. Our algorithm employs a low-rank
approximation of blocks, as performed by the Singular Value Decomposition al-
gorithm [13]. This method follows the idea of hierarchical matrix compression
as proposed by Hackbush [14]. The generation of isogeometric analysis mass
matrices speeds up with low-rank approximation has been discussed in [15]. In
our paper, we focus on the application of compression to speed up the iterative
solver. We consider the refined isogeometric analysis and discuss the influence on
the computational patch’s different orders of approximations and dimensions.

2 Matrices of refined isogeometric analysis

B-spline functions are commonly used in computer design and simulations thanks
to the growing popularity of so-called isogeometric analysis popularized by prof.
T. J. R. Hughes [1]. The formulas for B-splines are defined using Cox-de-Boor
rule [3] in the following way:

Bi,0(ξ) = 1 for ξi ≤ ξ ≤ ξi+1 and 0 in the other case

Bi,p(ξ) =
ξ − ξi

ξi+p − ξi
Bi,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bi+1,p−1(ξ) (1)

Both linear B-splines and higher order B-splines can be described using the
notation of the so-called knot vector. A knot vector will be a sequence of non-
decreasing coordinates of points. Let’s, for simplicity, assume points with integer
coordinates. The degree of the basis functions is equal to the number of times
the first (or last) point in the knot vector is repeated, minus one. In exemplary
knot vector [0 0 0 0 1 2 3 4 5 5 5 6 7 8 9 10 10 10 10] the first and last points
are repeated four times (0 0 0 0 and 10 10 10 10), so we introduce cubic basis
functions of second continuity. There is a repeated knot in the vector (5 5 5), and
the repetition of knot reduces the continuity at the point, so we have inserted
the C0 separator at the center. In rIGA the C0 separators are inserted every
l intervals. The two-dimensional B-splines are created by the tensor product
of one-dimensional B-splines [3]. For example, the tensor product of the knot
vectors [0 0 0 0 1 2 3 4 5 5 5 6 7 8 9 10 10 10 10] and [0 0 0 0 1 2 3 4 5 5 5
6 7 8 9 10 10 10 10] describes B-splines presented in Fig. 1, merging together
four patches of 5x5 elements with cubic B-splines. The mass matrix is defined
as the multiplication of two two-dimensional B-splines. The first B-splines are
called trials and are used for the approximation of the solution. The former are
called tests and are employed to generate different equations within the system
(and for local approximation of the equation in the strong form).

Mij,k,l;p =

∫
Ω

Bij;p(x, y)Bkl;p(x, y)dxdy =

∫
Ω

Bi;p(x)Bj;p(y)Bk;p(x)Bl;p(y)dxdy

(2)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_46

https://dx.doi.org/10.1007/978-3-031-08754-7_46


Title Suppressed Due to Excessive Length 3

The mass matrix can be factorized in a linear cost only if the computational
domain has a regular tensor product form. For the simulations on non-regular
geometries in 2D, the direct solvers deliver O(N1.5p2) computational cost, and
the iterative solvers deliver O(Nk) computational cost. Here N is the number of
B-splines, p is the order of B-splines, and k is the number of iterations (depending
on the geometry of the domain and the problem solved). The matrix-vector
computations can be performed without forming a global matrix when we focus
on refined isogeometric analysis and iterative solvers. This is called a matrix-free
iterative solver algorithm [16]. The solution vector is obtained by assembling
local elemental matrices multiplied by local portions of the right-hand side. In
the context of refined isogeometric analysis, this can be generalized to patches of
elements. In this paper, we focus on different patches of elements and different
orders of B-splines, and we perform recursive SVD compression of the resulting
mass matrix. Later, we compare the gain in terms of the number of floating-
point operations when performing matrix-vector multiplication over the patch
of elements, using the patches of rIGA.

Fig. 1. Two dimensional B-splines described as tensor product of two one-dimensional
B-splines defined by knot vector [0 0 0 0 1 2 3 4 5 5 5 6 7 8 9 10 10 10 10].

3 Compression algorithm

The main idea of the compression algorithm is the recursive dividing of the
matrix into four smaller submatrices and performing the approximate singular
value decomposition algorithm (SVD) for selected submatrices. The approximate
SVD decomposes any matrix A into A=UDV, where D is s diagonal matrix with
singular values sorted in a decreasing manner, U is the matrix of columns, an V
is the matrix of rows. In the approximate SVD, we remove from D singular values

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_46

https://dx.doi.org/10.1007/978-3-031-08754-7_46


4 F. Author et al.

smaller than prescribed epsilon. Thus, we can only keep r columns of U and r
rows of V, where r is the number of singular values left. Additionally, in order to
save the memory, the coefficients of the calculated matrix V are multiplied by
corresponding singular values of the diagonal matrix D. In other words, instead of
storing UDV we store UV’ where V’ is DV. The gain from the SVD decomposition
is that it enables matrix-vector multiplication in a computational cost of O(Nr)
instead of O(N2), if we perform the multiplications in order U*(V’*B) instead
of A*B or (U*V’)*B, see Fig. 2. For simplicity we call these matrices U and V
(remembering that V is multiplied by D).

Fig. 2. The approximate SVD of matrix A, where we save r singular values, so we
have N columns and N rows. The matrix-vector multiplication UDVB for the SVD
compressed matrix A=UDV results in O(Nr) computational cost.

The whole compression algorithm of a matrix can be seen as the recursive
dividing of the matrix into four smaller submatrices and can be described in the
following steps. If the submatrix consists of zeros, we remember its rank (zero)
and its number of rows. If the submatrix has some nonzero values, the SVD
algorithm is used. If the number of singular values found by SVD, which are
bigger than desired epsilon, is zero, we also remember only the submatrix rank
equal to zero and the number of its rows. If the number of singular values found
by SVD, which are bigger than desired epsilon, is nonzero (denote this value by
k), and additionally, (k <= r and k < numRows/2) or k == 1, where numRows
is the number of rows in the matrix and r is the arbitrary boundary for rank,
than we remember only the first k rows of matrix V and the first k column
of matrix U found by the SVD algorithms. The algorithm, during recursively
dividing of the matrix, creates the tree. Each node of the tree can be a leaf or it
can have four sons representing four submatrices. In each node, some attributes
are stored, like the rank of the corresponding matrix, the number of rows, or
vector U and V found by the SVD algorithm. The input of the algorithm is the
matrix A in a sparse form, the parameter epsilon, and the boundary rank value
r. The algorithm of compression of the matrix is presented in Algorithm 1.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_46

https://dx.doi.org/10.1007/978-3-031-08754-7_46


Title Suppressed Due to Excessive Length 5

Algorithm 1 Compress matrix(A, epsilon,r)
1: Create new node v
2: Divide Matrix A into 4 submatrices (quarters): A1 ,A2 ,A3 ,A4
3: for each submatrix B = A1 ,A2 ,A3 ,A4 do
4: if number on nonzero elements in B is equal to zero then
5: Create new node w
6: w .rowsWithZero = numofRows of matrix B
7: w .rank = 0
8: append child (v ,w)
9: else
10: //perform SVD for submatrix B
11: [U ,D ,V ] = svds(B)
12: eigenvalues = diag(D)
13: k =number of singular values bigger than epsilon
14: if k == 0 then
15: Create new node w
16: w .rowsWithZero = numofRows of matrix B
17: w .rank = 0
18: append child (v ,w)
19: else if (k <= r) AND (k < (numRows/2 ) OR (k == 1 )) then
20: Create new node w
21: w .rank = k
22: w .Ucolumns = U (:, 1 : k)
23: w .Vrows = V ′(1 : k , :)
24: for i = 1 : k do
25: w .Vrows(i , :) = w .Vrows(i , :) ∗ node.eigenvalues(i)
26: end for
27: append child (v ,w)
28: else
29: w =Compress Matrix(B , epsilon, r)
30: append child (v ,w)
31: end if
32: end if
33: end for

4 Multiplication algorithm

The input for the algorithm for multiplication of the compressed matrix by a
vector is the tree representing compressed matrix (the root node of the tree or its
subtree) and the vector. The idea of the algorithm is the following. If the input
node has no children, it means, that it represents a block of zeros or a block
remembered as matrices Ucolumns and V rows found by the SVD algorithm. In
the first case, the resulting vector is a vector of zeros. In the second case, the
result is the result of multiplication node.Ucolumns ∗ (node.V rows ∗x). It must
be underlined that the order of performing multiplication is critical, because
it influences the computational cost of obtaining the results. In the last case,
the input node has children. In this case, the partial multiplication for each

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_46

https://dx.doi.org/10.1007/978-3-031-08754-7_46


6 F. Author et al.

submatrix (each child of the input node) by the corresponding part of the input
vector has to be performed by the recursive call of the algorithm, followed by
calculating the final result of the multiplication.

Algorithm 2 MultiplyMatrixByVector(node, x)
1: if node.noofchildren == 0 then
2: if node.rank == 0 then
3: result =vector consisting of node.rowsWithZero zeros
4: else
5: result = node.Ucolumns ∗ (node.Vrows ∗ x )
6: end if
7: else
8: numRows =number of rows of vector x
9: x1 = v(1 : floor(numRows/2 ), :)//first part of vector x
10: x2 = v(floor(numRows/2 + 1 ) : numRows, :)//second part of vector x
11: //calculate the partial multiplication for each submatrix
12: res1 = MultiplyMatrixByVector(node.children(1 ), x1 )
13: res2 = MultiplyMatrixByVector(node.children(2 ), x2 )
14: res3 = MultiplyMatrixByVector(node.children(3 ), x1 )
15: res4 = MultiplyMatrixByVector(node.children(4 ), x2 )
16: //calculate the final result of multiplication
17: if res1 consist of zeros then
18: res1res2 = res2
19: else if res2 consist of zeros then
20: res1res2 = res1
21: else
22: res1res2 = res1 + res2
23: end if
24: if res3 consist of zeros then
25: res3res4 = res4
26: else if res4 consist of zeros then
27: res3res4 = res2
28: else
29: res3res4 = res3 + res4
30: end if
31: result = [res1res2 ; res3res4 ]
32: end if

The main idea of the recursive multiplication algorithm is the following. Let
consider the compressed matrix consisting of four blocks denoted by C, D, E,
and F , where each block is compressed by the SVD algorithm into matrices C1
and C2, D1 and D2, E1 and E2, F1 and F2, respectively, as presented in Fig.
3. The result of multiplication of this matrix by vector X (X = [X1, X2]) is a
vector: [C1 ∗ (C2 ∗X1)+D1 ∗ (D2 ∗X2), E1 ∗ (E2 ∗X1)+F1 ∗ (F2 ∗X2)]. Let
assume that the matrices C2, D2, E2, F2 are of size r ∗N and the matrices C1,
D1, E1, F1 are of size N ∗ r. The vectors X1 and X2 have size N ∗ 1. The cost

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_46

https://dx.doi.org/10.1007/978-3-031-08754-7_46


Title Suppressed Due to Excessive Length 7

of performing multiplication of our input matrix by vector can be summarized
step by step, as follows:

– The cost of multiplication C2*X1 is N*r, and the result has size r*1,
– The cost of multiplication C1*(C2*X1) is N*r*r, and the result has size N*1,
– The cost of multiplication D2*X2 is N*r, and the result has size r*1,
– The cost of multiplication D1*(D2*X2) is N*r*r, the result has size N*1,
– The cost of summing the results is N*1,
– The cost of multiplication E2*X1 is N*r, and the result has size r*1,
– The cost of multiplication E1*(E2*X1) is N*r*r, and the result has size N*1,
– The cost of multiplication F2*X2 is N*r, and the result has size r*1,
– The cost of multiplication F1*(F2*X1) is N*r*r, and the result has size N*1,
– The cost of summing the results is N*1.

Summing up, the cost of the multiplication our input compressed matrix by a
vector is N ∗ r in the contrary to the classic multiplication of matrix by vector
with the cost N2.

Fig. 3. Matrix-vector multiplication for the matrix recursively decomposed into four
sub-matrices. The multiplications are performed C1 ∗ (C2 ∗X1) +D1 ∗ (D2 ∗X2) and
E1 ∗ (E2 ∗X1) + F1 ∗ (F2 ∗X2) so the resulting computational cost is O(Nr), where
r is the number of rows and columns in the compressed matrices.

5 Results

The tests were performed comparing the number of floating point operations
and accuracy for matrix by vector multiplication, for matrix compressed by the
algorithm, and sparse matrix. The input matrix was the mass matrix in the com-
pressed or sparse form. The tested mass matrices are generated for a different
number of intervals, equal to 1, 2, 4, 8, 16, and 32, corresponding to different
dimensions of patches in rIGA, and for different polynomial orders of approxi-
mation, equal 2, 3, 4 and 5. The compression algorithm was tested for epsilon
equal to 0.00001, 0.0001, 0.001, 0.01 and 0.1 and r equal to 1, 2, 3, 4, 5, 6. For big
values of epsilon (epsilon equal to 0.1) almost all singular values were smaller
than epsilon and were omitted during the compression process thus the results
of the multiplication of the compressed matrix by vector have low accuracy.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_46

https://dx.doi.org/10.1007/978-3-031-08754-7_46


8 F. Author et al.

Obtained results for r equal to 1 and 6 and small epsilon values (0.00001) are
summarized in this section. Fig. 4 presents the number of floating point opera-
tions performed in the matrix by vector multiplication algorithm for compressed
matrix and matrix in sparse form. The mass matrix was generated for quintic
B-splines (p = 5), and the number of intervals was equal to 1, 2, 4, 8, 16, 32. The
compression was performed for epsilon equal to 0.00001 and r=1 (blue line) and
r=6 (grey line). The maximal error in coefficient in obtained vector (the result
of matrix by vector multiplication) is presented in Table 1 and Table 2. The pre-
sented results show that for epsilon=0.00001 and a smaller number of intervals
(1,2,4) the compression performed for r=1 gives bigger number of floating point
operations for matrix by vector multiplication than classic approach. For r=1
and number of intervals equal to 8 the number of floating point operations is
almost the same, for 16 and 32 intervals, the number of floating point operations
for multiplication of a compressed matrix by vector is smaller than for classic
multiplication for sparse matrix. For r=6 and epsilon=0.00001, the number of
floating point operations for compressed matrix by vector multiplication algo-
rithm is up to five times smaller than the number of floating point operations
performed by a sparse matrix by vector multiplication algorithm. The accuracy
of a vector obtained by the compressed matrix by vector multiplication algorithm
is two orders of magnitude better for r=1 than for r=6. However, the accuracy
obtained for r=6 is also satisfactory. In Fig. 5, the compressed mass matrices for
quintic B-splines (p=5) and the number of intervals equal to 2 (first and second
panel) and 32 (third and fourth panel) are shown. The compression was per-
formed for epsilon equal to 0.00001, r=1 (first and third panel) and r=6 (second
and fourth). The white color in the matrix denotes blocks of zeros. For the case
of performing the SVD algorithm for block and remembering only k-rows and
k-columns, the block is represented as k rows and k columns denoted by black
color and white color in other places of the block. It can be seen that for r=1
the mass matrices were less compressed. For r=6 the matrices were compressed
into four big blocks, for the case of the mass matrix for 2 and 32 intervals.

1

10

100

1000

10000

100000

1000000

1 2 4 8 16 32

quin c B-splines, epsilon=0.00001

Hierarcically compressed matrix r=1 Original sparse matrix

Hierarchically compressed matrix r=6

Fig. 4. The number of floating point operations in matrix by vector multiplication.
The mass matrix generated for quintic B-splines, and the number of intervals equal to
1, 2, 4, 8, 16, 32. The compression performed for epsilon=0.00001, r=1 and r=6.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_46

https://dx.doi.org/10.1007/978-3-031-08754-7_46


Title Suppressed Due to Excessive Length 9

Fig. 5. The compressed mass matrix for quintic B-splines (p=5) and the number of
intervals equal to 2 (first and second panel) and 32 (third and fourth panel). The
compression performed for epsilon equal to 0.00001, r=1 (first and third panel) and
r=6 (second and fourth panel).

Table 1. The number of elements in a patch in a single direction, the epsilon used
in the approximate svd compression, the maximal number of compressed rows and
columns r=1, the error of the approximate matrix-vector multiplication, the number
of floating point operations for the approximate matrix - vector multiplication, the
number of floating point operations for original sparse matrix-vector multiplication.
The compressed mass matrix was generated for quintic B-splines.

number of intervals epsilon r max difference flops orginal flops
1 0.00001 1 7,04E-06 5674 2592
2 0.00001 1 1,49E-05 7657 4418
4 0.00001 1 2,26E-05 12971 9522
8 0.00001 1 2,41E-05 26826 25538
16 0.00001 1 2,34E-05 70412 80802
32 0.00001 1 3,01E-05 196064 284258

Table 2. The number of elements in a patch in a single direction, the epsilon used
in the approximate svd compression, the maximal number of compressed rows and
columns r=6, the error of the approximate matrix-vector multiplication, the number
of floating point operations for the approximate matrix - vector multiplication, the
number of floating point operations for original sparse matrix-vector multiplication.
The compressed mass matrix was generated for quintic B-splines.

number of intervals epsilon r max difference flops orginal flops
1 0.00001 6 9.198856941664627e-04 1764 2592
2 0.00001 6 0.004692543537821 2401 4418
4 0.00001 6 0.006970278448885 3969 9522
8 0.00001 6 0.008889747812938 7921 25538
16 0.00001 6 0.004687370741346 18945 80802
32 0.00001 6 0.001832486 55201 284258

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_46

https://dx.doi.org/10.1007/978-3-031-08754-7_46


10 F. Author et al.

Figure 6 presents the number of floating point operations performed in the
matrix by vector multiplication algorithm for compressed matrix and matrix in
sparse form. The mass matrix was generated for quartic B-splines (p=4), and
the number of intervals was equal to 1, 2, 4, 8, 16, 32. The compression was
performed for epsilon equal to 0.00001 and r=1 (blue line) and r=6 (grey line).
In Fig. 7, the compressed mass matrices for quartic B-splines (p=4) and the
number of intervals equal to 2 (first and second panel) and 32 (third and fourth
panel) are shown. The compression was performed for epsilon equal to 0.00001,
r=1 (first and third panel) and r=6 (second and fourth).

1

10

100

1000

10000

100000

1000000

1 2 4 8 16 32

quar c B-splines, epsilon=0.00001

Hierarcically compressed matrix r=1 Original sparse matrix

Hierarchically compressed matrix r=6

Fig. 6. The number of floating point operations in matrix by vector multiplication.
The mass matrix generated for quartic B-splines, and the number of intervals equal to
1, 2, 4, 8, 16, 32. The compression performed for epsilon=0.00001, r=1 and r=6.

Fig. 7. The compressed mass matrix for quartic B-splines (p=4) and the number of
intervals equal to 2 (first and second panel) and 32 (third and fourth panel). The
compression performed for epsilon equal to 0.00001, r=1 (first and third panel) and
r=6 (second and fourth panel).

Figure 8 presents the number of floating point operations performed in the
matrix by vector multiplication algorithm for compressed matrix and matrix in
sparse form. The mass matrix was generated for cubic B-splines (p=3), and the
number of intervals was equal to 1, 2, 4, 8, 16, 32. The compression was performed
for epsilon equal to 0.00001 and r=1 (blue line) and r=6 (grey line). The obtained

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_46

https://dx.doi.org/10.1007/978-3-031-08754-7_46


Title Suppressed Due to Excessive Length 11

results show that for the mass matrix generated for one interval or two intervals
and cubic B-splines, the number of floating point operations for matrix by vector
multiplication algorithm for matrix in compressed form for r equal to 1 and 6
is bigger than for the matrix in sparse form. For bigger number of intervals, for
r=6 and epsilon=0.00001 the number of floating point operations for compressed
matrix by vector multiplication algorithm is smaller than the number of floating
point operations performed by sparse matrix by vector multiplication algorithm.
In Fig. 9, the compressed mass matrices for cubic B-splines (p=3) and the
number of intervals equal to 2 (first and second panel) and 32 (third and fourth
panel) are shown. The compression was performed for epsilon equal to 0.00001,
r=1 (first and third panel) and r=6 (second and fourth).

1

10

100

1000

10000

100000

1000000

1 2 4 8 16 32

cubic B-splines, epsilon=0.00001

Hierarcically compressed matrix r=1 Original sparse matrix

Hierarchically compressed matrix r=6

Fig. 8. The number of floating point operations in matrix by vector multiplication.
The mass matrix generated for cubic B-splines, and the number of intervals equal to
1, 2, 4, 8, 16, 32. The compression performed for epsilon=0.00001, r=1 and r=6.

Fig. 9. The compressed mass matrix for cubic B-splines (p=3) and the number of
intervals equal to 2 (first and second panel) and 32 (third and fourth panel). The
compression performed for epsilon equal to 0.00001, r=1 (first and third panel) and
r=6 (second and fourth panel).

Figure 10 presents the number of floating point operations performed in the
matrix by vector multiplication algorithm for compressed matrix and matrix in
sparse form. The mass matrix was generated for qadratic B-splines (p=2), and
the number of intervals was equal to 1, 2, 4, 8, 16, 32. The compression was

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_46

https://dx.doi.org/10.1007/978-3-031-08754-7_46


12 F. Author et al.

performed for epsilon equal to 0.00001 and r=1 (blue line) and r=6 (grey line).
The obtained results show that for the mass matrix generated for one interval or
two intervals and quadratic B-splines, the number of floating point operations
for matrix by vector multiplication algorithm for matrix in compressed form for
r equal to 1 and 6 is bigger than for the matrix in sparse form. For bigger number
of intervals, for r=6 and epsilon=0.00001 the number of floating point operations
for compressed matrix by vector multiplication algorithm is slightly smaller than
the number of floating point operations performed by sparse matrix by vector
multiplication algorithm. It can be seen that for r=1 the mass matrices for 2 and
32 intervals as well as mass matrix for 2 intervals for r=6 were less compressed.
For r=6 the mass matrix generated for 32 intervals was compressed into four big
blocks. In Fig. 11, the compressed mass matrices for quadratic B-splines (p=2)
and the number of intervals equal to 2 (first and second panel) and 32 (third
and fourth panel) are shown. The compression was performed for epsilon equal
to 0.00001, r=1 (first and third panel) and r=6 (second and fourth). Similar
results, with better compression but slightly lower accuracy were obtained for
compression with epsilon equal to 0.0001.

1

10

100

1000

10000

100000

1 2 4 8 16 32

quadra c B-splines, epsilon=0.00001

Hierarcically compressed matrix r=1 Original sparse matrix

Hierarchically compressed matrix r=6

Fig. 10. The number of floating point operations in matrix by vector multiplication.
The mass matrix generated for quadratic B-splines, and the number of intervals equal
to 1, 2, 4, 8, 16, 32. The compression performed for epsilon=0.00001, r=1 and r=6.

Fig. 11. The compressed mass matrix for quadratic B-splines (p=2) and the number
of intervals equal to 2 (first and second panel) and 32 (third and fourth panel). The
compression performed for epsilon equal to 0.00001, r=1 (first and third panel) and
r=6 (second and fourth panel).

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_46

https://dx.doi.org/10.1007/978-3-031-08754-7_46


Title Suppressed Due to Excessive Length 13

6 Summary of the results

The performed tests show that recursive compression of the matrix by SVD
algorithm can speed up the process of matrix-vector multiplication. The best
results were obtained for r=6 and epsilon=0.00001 for p=5 (quintic B-splines).
Especially, the number of floating point operations for compressed matrix - vector
multiplication algorithm (55201 floating point operations) is up to five times
smaller than the number of floating point operations performed by a sparse
matrix - vector multiplication algorithm (284258 floating point operations) -see
Table 1. In general, increasing the order of B-splines results in better compression
and faster matrix-vector multiplication.

7 Conclusions and future work

In this paper, we focused on recursive compression of isogeometric analysis mass
matrices. We showed that having the matrix recursively compressed, we can
speed up the computations of time-dependent problems with iterative solvers
up to five times. We considered different orders of B-spline basis functions and
different dimensions of patches as employed by refined isogeometric analysis.
The future work will involve analysis for stiffness and advection matrices to
implement the implicit time integration schemes, and considering adaptive non-
regular grids, using e.g. T-splines [17].

References

1. Austin Cottrell, J. , Hughes, T. J. R., Bazilevs, Y.: Isogeometric Analysis: Toward
Integration of CAD and FEA, John Wiley Sons, Computational and Numerical
Methods, (2009)

2. Hughes, T. J. R. , Cottrell, J. A., Bazilevs, Y.: Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement. Computer methods in
applied mechanics and engineering 194(39),4135-4195 (2005)

3. Paszyński, M.: Classical and isogeometric finite element method.
https://epodreczniki.open.agh.edu.pl/handbook/1088/module/1173/reader

4. Hsu, M.-C., Akkerman, I., Bazilevs, Y.: High-performance computing of wind tur-
bine aerodynamics using isogeometric analysis. Computers and Fluids, 49(1), 93-100
(2011)

5. Hossain, S., Hossainy, S.F.A., Bazilevs, Y., Calo, V.M., Hughes, T.J.R.: Mathe-
matical modeling of coupled drug and drug-encapsulated nanoparticle transport in
patient-speciffic coronary artery walls. Computational Mechanics, 2, 213-242 (2011)

6. Łoś, M., Kłusek, A., Hassaan, M. A., Pingali, K., Dzwinel, W., Paszyński, M.:
Parallel fast isogeometric L2 projection solver with GALOIS system for 3D tumor
growth simulations. Computer Methods in Applied Mechanics and Engineering 343,
1-22, (2019)

7. Łoś, M., Paszyński, M., Kłusek,K., Dzwinel, W. :Application of fast isogeometric
L2 projection solver for tumor growth simulations. Computer Methods in Applied
Mechanics and Engineering 316, 1257-1269 (2017)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_46

https://dx.doi.org/10.1007/978-3-031-08754-7_46


14 F. Author et al.

8. Garcia, D. , Pardo, D., Dalcin,L., Paszynski, M., Collier, N., Calo, V. M.: The
value of continuity: Refined isogeometric analysis and fast direct solvers. Computer
Methods in Applied Mechanics and Engineering 316, 586–605 (2017)

9. Garcia, D. , Pardo, D., Dalcin,L., M., Calo, V. M.: Refined isogeometric analysis for a
preconditioned conjugate gradient solver. Computer Methods in Applied Mechanics
and Engineering 335, 490–509 (2018)

10. Garcia, D. , Pardo, M., Calo, V. M.: Refined isogeometric analysis for fluid mechan-
ics and electromagnetics. Computer Methods in Applied Mechanics and Engineering
356, 598–628 (2019)

11. Łoś, M., Woz, M., Paszyński, M, Dalcin,L., M., Calo, V. M.: Dynamics with Ma-
trices Pos-sessing Kronecker Product Structure. Procedia Computer Science 51,286-
295 (2015)

12. Saad, J.: Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics (2003)

13. Golub, G. H. ,Van Loan, C.: Matrix Computations, 3rd Edition. John Hopkins
University Press, Baltimore, MD, (1996).

14. Hackbusch, W.: Hierarchical Matrices: Algorithms and Analysis, Springer (2015)
15. Mantzaflaris, A., Juttler, B., Khoromskij, B., Langer, U.: Matrix Generation in Iso-

geometric Analysis by Low Rank Tensor Approximation. International Conference
on Curves and Surfaces, 321-340 (2015)

16. Langville, A.N., Meyer, C.D.: Google’s PageRank and beyond: the science of search
en-gine rankings, Princeton University Press (2006)

17. Bazilevs, Y., Calo, V. M., Cottrell, J. A. ,Evans, J. A. , Lipton, S., Scott, M.
A., Sederberg, T. W.: Isogeometric analysis using T-splines. Computer Methods in
Applied Mechan-ics and Engineering, 199 229-263 (2010)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_46

https://dx.doi.org/10.1007/978-3-031-08754-7_46

