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Abstract. Physics-informed neural networks allow models to be trained
by physical laws described by general nonlinear partial differential equa-
tions. However, traditional architectures of this approach struggle to
solve more challenging time-dependent problems. In this work, we present
a novel physics-informed framework for solving time-dependent partial
differential equations. Using only the governing differential equations and
problem initial and boundary conditions, we generate a latent represen-
tation of the problem’s spatio-temporal dynamics. Our model utilizes
discrete cosine transforms to encode spatial frequencies and re-current
neural networks to process the time evolution. This efficiently and flexibly
produces a compressed representation which is used for additional condi-
tioning of physics-informed models. We show experimental results on the
Taylor-Green vortex solution to the Navier-Stokes equations. Our pro-
posed model achieves state-of-the-art performance on the Taylor-Green
vortex relative to other physics-informed baseline models.

Keywords: Physics-informed neural networks · RNN · DCT · numerical
simulation · PDEs · Taylor-Green vortex

1 Introduction

Numerical simulations have become an indispensable tool for modeling physical
systems, which in turn drive advancements in engineering and scientific discovery.
However, as the physical complexity or spatio-temporal resolution of a simulation
increases, the computational resources and run times required to solve the
governing partial differential equations (PDEs) often grow drastically.

ML-driven solvers. Recently, machine learning approaches have been
applied to the domain of physical simulation to ameliorate these issues by
approximating traditional solvers with faster, less resource-intensive ones. These
methods generally fall into two main paradigms: data-driven supervision [2, 5,
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7, 12, 20] or physics-informed neural networks (PINNs) [1, 15, 16, 19]. Data-
driven approaches excel in cases for which reliable training data is available
and if the underlying physical equations are unknown. These generally utilize
deep neural networks to parameterize the solution operator. PINN-based solvers
parameterize the solution function directly as a neural network. This is typically
done by passing a set of query points through a multilayer perceptron (MLP) and
minimizing a loss function based on the governing PDEs, initial conditions (ICs)
and boundary conditions (BCs). The simulation becomes constrained by physics
alone and does not require any training data. However, the accuracy of traditional
PINN-based approaches is limited to simpler problems in low dimensions and
time-independent physics [10].

Learning time-dependent problems with PINNs. For time-dependent
problems, traditional PINN-based models use a continuous time approach which
treats the temporal and spatial dimensions in the same manner. To avoid increas-
ingly poor performance as the simulation evolves in time, methods have been
developed to split the domain into many short-time problems and solve each
step using continuous-time PINNs [13, 14]. However, this results in additional
model complexity and computational overhead. In principle, a well-constructed
latent context grid allows the PINN to learn more easily while still relying on
physics-constrained losses. In this work, we design a novel physics-informed MLP
architecture by adding a new latent context generation process to effectively
learn spatial-temporal physics problems.

Efficient learning in time and space. Typical feedforward neural networks
lack notions of temporal relationships. Recurrent neural networks (RNNs) form
graphs directed along a temporal sequence, allowing learning of time-dependent
dynamics. Long Short-Term Memory (LSTM) [9] and Gated Recurrent Units
(GRUs) [3] provide a gating mechanism to solve the problem of vanishing gradients
and have become popular choices for RNNs, exhibiting high performance and
efficiency. For spatial features, Xu et al. [18] demonstrate that compressing large
images in the frequency domain using digital signal processing improved model
accuracy while greatly reducing input size. This allows for high model efficiency
while maintaining compatibility with standard spatial CNN architectures.

Contributions. Although PINN solvers provide a well-principled, machine
learning approach that could enhance the capabilities of numerical simulations,
their current constraints to problems with simple geometries and short times
severely limits their real-world impact. We address these shortcomings by intro-
ducing novel design choices that improve the simulation accuracy and efficiency
of PINN solvers on more challenging problems, particularly in the regime of long
time evolution where current PINNs severely struggle.

Our key contributions are as follows: (1) We propose a new approach for latent
context generation that requires no additional data and enables PINNs to learn
complex time-dependent physics problems. (2) To the best of our knowledge, our
work is the first to directly address space-time-dependent physics using PINNs.
This is achieved by utilizing convolutional GRUs for learning the spatio-temporal
dynamics of simulations. (3) We separate the spatial and frequency domains,
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Fig. 1. (a) Full model architecture. (b) RNN propagation. (c) Patch-DCT encoding.

adding flexibility for the network to learn more diverse physical problems. (4) We
test the new model against other architectures on benchmark transient simulation
problems and demonstrate quantitative improvements in both accuracy and speed.

2 Methods

In this paper, we propose a new model that enables PINN-based neural solvers
to learn temporal dynamics in both the spatial and frequency domains. Using no
additional data, our architecture can generate a latent context grid that efficiently
represents more challenging spatio-temporal physical problems.

Our full architecture is shown in Fig. 1 (a). It consists of three primary
parts, which are explained in more detail below: (1) latent context generation,
(2) decoding, and (3) physics-informing. The latent context generation stage
takes as input the problem ICs and BCs and outputs spatio-temporal latent
context grids. For the decoding stage, spatio-temporal query points along with
additional vectors interpolated from the latent context grid are used as input.
For each set of points, the MLP predicts corresponding output values, on which
the physics-constrained losses are applied. Upon minimization of these losses, the
MLP approximates the function governed by the underlying PDEs.

Latent grid network. The primary novelty of our method is the latent
grid network that can generate context grids which efficiently represent the entire
spatio-temporal domain of a physical problem without requiring additional data.

This network requires two inputs for the problem-specific constraints: ICs and
BCs. The ICs are defined as u0 = u(x1,..,N , t = 0) for each PDE solution function
u over N spatial dimensions. The BCs are defined based on the geometry of the
problem for each spatial dimension. An additional spatial weighting by signed
distance functions (SDFs) can also be applied to avoid discontinuities at, e.g.,
physical boundaries, but would not be necessary for, e.g., periodic BCs. Each
tensor undergoes an encoding step in either the frequency or spatial domain.

The frequency branch transforms the spatial inputs to frequencies via the
discrete cosine transform (DCT), motivated by [18]. Fig. 1 (c) illustrates our
patch-wise DCT encoding step. First, the ICs and BCs are separately split into
spatial patches of size p × p. DCTs are performed on each patch to yield the
corresponding frequency coefficient array. The tensor is then reshaped such that
the same coefficient across all patches forms each channel, and the channels are
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reordered by increasing coefficient (i.e., decreasing energy). After the reordering,
the channels are truncated by n%, so the lowest n% of frequency coefficients
(largest energies) are kept. This outputs highly compressed representations for
the ICs and BCs, which are used as inputs for an RNN propagation branch.

The spatial branch follows a traditional ResNet [6] architecture, in which the
ICs and BCs each pass through separate convolutional encoders comprising sets
of convolutional blocks with residual connections. The inputs are downsampled
with strided convolutions before entering the spatial RNN propagation branch.

RNN propagation. After compression, the representations enter the RNN
propagation stage (Fig. 1 (b)), in which the BCs are split into an additive (Bbc)
and multiplicative (W bc) component and combined with an IC-informed state
matrix (Ht). The final output at each timestep is computed as St = W bcHt+Bbc.
This method offers flexibility and efficiency in learning the dynamics of compressed
simulations [7]. To predict the simulation state at each successive timestep, the
previous hidden state Ht−1 is passed through a convolutional GRU (ConvGRU)
along with the previous output St−1; for timestep 0, the initial state H0 set to
zero and ICs are used as inputs. This occurs in a recurrent manner until the
final time T . Thus, for each timestep, the RNN propagation stage outputs St

which is then sent to a decoding step corresponding to the original frequency
or spatial encoding. S0 = u0, H0 = 0, Ht = ConvGRU(St−1, Ht−1), St =
W bcHt +Bbc, t ∈ {1, . . . , T}. The RNN propagation stage is duplicated across
both frequency and spatial branches.

Latent grid generation. After RNN propagation, the outputs are combined to
form the latent grid. In the frequency branch, the output state at each timestep
from the RNN is converted back into the spatial domain: 1) reshaping the
frequencies from coefficients to patches 2) performing IDCTs, and 3) merging the
patches to reconstruct the spatial domain. The output of the frequency branch is
denoted as Of

t . The representation in the spatial domain Os
t is then added with

learnable weights W o
t . Thus, the final output is computed as: Ot = W o

t O
s
t +Of

t .
These combined outputs Ot for each timestep are used to form the spatio-temporal
latent context grids. Finally, the multiple resolutions of grids are generated by
upsampling the outputs Ot using transpose convolutional blocks.

Decoding step. The multi-resolution latent context grids generated from
the previous step are then used to query points input to the MLP. This decoding
step follows the same principles as [4]. Given a random query point x := (x, y, t), k
neighboring vertices of x at each dimension are selected. Using these neighboring
vertices, the final values of the context vector are then Gaussian-interpolated.
This process is repeated for each of the multi-resolution grids allowing the PINN
framework to learn spatio-temporal quantities at multiple resolutions.

Physics-informed loss. The MLP outputs predictions that are then subject
to the loss function determined by the ICs, BCs, and the PDEs. The losses are
backpropagated through the entire combined decoding and latent grid network
and minimized via stochastic gradient descent. This end-to-end training allows
our two-branch convGRU model to learn accurate time-evolution of the spatial
and frequency domains in complex physical problems.
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3 Experiments

We compare our model (RNN-SpDCT) against several other neural network
solver architectures using the 2D Taylor-Green vortex problems. This problem
is commonly used to test and validate spatial and temporal accuracy of both
traditional and ML-based fluid solvers. We compare against PINN-based models
and use the ICs, BCs, and PDE constraints for all comparing models. We used a
single Tesla V100 16G or 32G for all experiments.

Taylor-Green vortex. The Taylor-Green vortex describes a decaying
vortex flow which follows a special case of the Navier-Stokes equations [17]. The
incompressible Navier-Stokes equations in 2D are ∂xu+ ∂yv = 0, ∂tu+ u∂xu+
v∂yu = −∂xρ/ρ+ν(∂xxu+∂yyu), ∂tv+u∂xv+v∂yv = −∂yρ/ρ+ν(∂xxv+∂yyv),
where u and v are the x- and y-velocities, respectively, ν ∈ R+ is the kinematic
viscosity, and ρ is the density.

The exact closed form solution for the Taylor-Green vortex over the domain
x×y×t ∈ [0, 2π]×[0, 2π]×[0, T ] is u = cosx sin yF (t), v = − sinx cos yF (t), p =
−ρ
4 (cos 2x+ cos 2y)F 2(t), where F (t) = e−2νt and p is the pressure.

Dataset. We used 2π seconds for both training and testing. During training,
the input size is set to 32× 32. The first timestep is used as an initial condition,
and x and y are used as boundary conditions. For testing, the size of x and y are
set to 128× 128, and 10 time steps are uniformly sampled between 0 and 2π.

Experimental setup. The number of interpolation points k used in the
decoding step is 3, and the truncation ratio n is fixed to 25%. All models are
trained with an Adam optimizer [11]. We found that patch-wise models need
lower initial learning rate 1e− 4 and the others with higher initial learning rate
4e− 4 with 0.95 decay rate and different decay steps: 8000 steps for patch-based
models, 2000 steps for other models.

Network architecture. The patch size p in the patch-based DCT models
is set to 8. The number of (encoding) residual blocks are 2 for the spatial branch
and 1 for the frequency branch. In the spatial branch, 4 additional residual blocks
are used with stride 2 for downsampling . There is no downsampling layer for the
frequency branch. All convolutional layers have a filter size of 3× 3, and there
are two RNN propagation layers. The number of upsampling layers is searched
between 1 and 4, and the reported numbers are with 4 layers.

Baseline models. We compare our proposed model against several PINN-
based approaches: MLP-PINN, RNN-S, RNN-pDCT, and RNN-SfDCT. All
comparing models contain the RNN-propagation and decoding steps except for
MLP-PINN and all use physics informed loss explained in section 2. All use the
same hyper-parameters as our model except for learning rate and decay steps.
MLP-PINN: a traditional MLP-based PINN solver used as a default model
from SimNet [8]. RNN-S: a PINN solver with a latent grid network consisting
of a single spatial branch (ResNet). RNN-pDCT: a PINN solver with a latent
grid network consisting of a single frequency branch (DCT). RNN-SfDCT:a
PINN solver with a latent grid network consisting of both spatial and frequency
branches. The frequency branch in this model applies DCT/IDCT to the full
input, foregoing the patching, coefficient channel reordering, and truncation steps.
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Table 1. Quantitative comparisons. The averaged mean squared error (MSE) over
10 uniformly sampled time steps for 2π sec. is reported. ν is the kinematic viscosity of
the fluid. F and S indicate frequency and spatial branches. FullDCT applies DCT to
the entire input. The numbers are in the magnitude of 10−2.

Model Name Branch DCT type
Taylor-Green Vortex

ν = 1.0 ν = 0.1 ν = 0.01
velocity pressure velocity pressure velocity pressure

MLP-PINN - - 0.033 5.910 1.769 0.782 0.824 0.522

RNN-S S - 6.683e-8 0.075 2.975e-7 0.138 2.527e-7 0.020
RNN-pDCT F patch 1.979e-6 0.172 5.957e-7 1.383 8.804e-7 0.508
RNN-SfDCT S+F full 9.171e-8 1.177 2.961e-7 0.301 7.015e-6 0.018

RNN-SpDCT S+F patch 1.408e-7 0.044 3.107e-7 0.101 1.328e-6 0.012
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Fig. 2. Top: MSE comparisons over time. The MSE of the five models with respect
to ground truth are shown over time for the Taylor-Green vortex problem. Bottom:
Visualization of the predictions with the viscosity ν = 0.1 at around 3.5 sec. (left)
and ν = 0.01 at around 6 sec. (right).

Results. Tab. 1 summarizes the performance of our model compared to the
other PINN baselines. RNN-SpDCT achieves the best performance for all values
of vorticity. All RNN models achieve extremely accurate velocities compared to
MLP-PINN. Fig. 2 (top) shows the performance comparisons over time. Overall,
for both x-velocity and pressure, RNN-based model produces much lower error
throughout long time evolution compared to the baseline MLP-PINN, and RNN-
SpDCT achieves the best overall performance. Fig. 2 (bottom) visualizes the
predictions and compares with the analytical solution. The model produces much
more accurate predictions for longer time steps (up to 2π sec.) compared to
MLP-based PINNs.

4 Conclusion

We presented a novel extension to the PINN framework designed especially for
time-dependent PDEs. Our model utilizes RNNs and DCTs to generate a multi-
resolution latent context grid to condition the traditional MLP PINN architecture.
We demonstrated that our model can accurately predict the solution functions in
Taylor-Green vortex simulations (especially for pressures) and achieve state-of-
the-art results. Future directions include experiments on more complex problems,
higher dimensions, and longer time evolution.
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