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Abstract. The rate of penetration (ROP) is a key performance indica-
tor in the oil and gas drilling industry as it directly translates to cost
savings and emission reductions. A prerequisite for a drilling optimiza-
tion algorithm is a predictive model that provides expected ROP values
in response to surface drilling parameters and formation properties. The
high predictive capability of current machine-learning models comes at
the cost of excessive data requirements, poor generalization, and exten-
sive computation requirements. These practical issues hinder ROP mod-
els for field deployment. Here we address these issues through transfer
learning. Simulated and real data from the Volve field were used to pre-
train models. Subsequently, these models were fine-tuned with varying
retraining data percentages from other Volve wells and Marcellus Shale
wells.
Four out of the five test cases indicate that retraining the base model
would always produce a model with lower mean absolute error than train-
ing an entirely new model or using the base model without retraining.
One was on par with the traditional approach. Transfer learning allowed
to reduce the training data requirement from a typical 70 percent down
to just 10 percent. In addition, transfer learning reduced computational
costs and training time. Finally, results showed that simulated data could
be used in the absence of real data or in combination with real data to
train a model without trading off model’s predictive capability.

Keywords: Rate of Penetration model · Transfer Learning · Deep
Learning.

⋆ This work is part of the Center for Research-based Innovation DigiWells: Digital Well
Center for Value Creation, Competitiveness and Minimum Environmental Footprint
(NFR SFI project no. 309589, DigiWells.no). The center is a cooperation of NORCE
Norwegian Research Centre, the University of Stavanger, the Norwegian University
of Science and Technology (NTNU), and the University of Bergen, and funded by
the Research Council of Norway, Aker BP, ConocoPhillips, Equinor, Lundin, Total-
Energies, and Wintershall Dea.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_44

https://dx.doi.org/10.1007/978-3-031-08754-7_44


2 F. Pacis et al.

1 Introduction

According to a 2016 study by EIA [2], drilling constitutes 30-60% of the average
cost per well, which varies from $4.9 MM to $8.3 MM for onshore wells and
$120 MM to $230MM for offshore wells. Thus, a modest improvement in the
duration of drilling a well results in significant monetary savings. Among other
factors such as preventing a non-productive time due to equipment failure or
poor weather conditions, choosing the optimal drilling parameters to increase
ROP is essential in reducing drilling duration.

Many attempts have been made on predicting the ROP. Although with some
success [32], traditional physics-based models require frequent recalibration de-
pending on the auxiliary data such as facies types, bit design, and mud proper-
ties [5, 23, 16, 24]. This is challenging since facies types, in particular, are often
unknown prior to drilling and would require correlation to data from nearby
(offset) wells, if such wells exist.

Machine learning (ML) models try to address these challenges by using data
to find correlations among many drilling variables. A study by Hegde et al. [17]
showed an improvement in ROP prediction in accuracy from 0.46 to 0.84 when
using random forest. Elkatatny et al. [11] also showed an improvement from 0.72
to 0.94 using an Artificial Neural Network (ANN).

Despite significant improvements in recent years, no ML approach has been
widely used for ROP optimization to date [25]. The potential reason could be
that the existing ML models are impractical for real-time ROP prediction tasks.
Developing an ML ROP model is a multidimensional problem that does not
revolve solely around prediction accuracy. Higher predictive capability comes
at the cost of substantial data requirements, computational constraints, and
generalization capability. From a practical perspective, tackling these constraints
would be desirable for several reasons.

First, the need for large datasets for training a model for every well would
limit the value creation. ANN training, such as Elkatatny et al. [11] and Abbas
et al. [3], would require 70% of data for training; rendering these methods
essentially not applicable in real scenarios since only a fraction of a well can
benefit from such approach, see Figure 1.

Second, ML models presented by O’Leary et al. [25], Mantha et al. [21],
and Hegde et al. [17] require a priori knowledge on the formations being drilled.
However, this information is rarely available prior to drilling the hole. This is
problematic for wells drilled in new areas where offset wells do not exist yet.

Third, ROP prediction is a real-time regression problem. Unlike physics-
based models that only require pre-identification of parameters, the ML requires
training before deployment. Hence, one should consider the online computation
requirements.

Fortunately, ROP ML models’ issues are not foreign in other domains. Deep
Learning models, in general, suffer from overfitting due to insufficient training
data [33]. Transfer learning (TL) is an active research field in Deep Learning
that deals with reusing a model trained from a more general task, termed base
model or pre-trained model, to another specific tasks, termed target model. TL
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Fig. 1. Data utilization for traditional vs transfer learning approaches for well data.

techniques have been proven successful in many domains such as computer vision
and natural language processing [26].

In this paper, we present the application of TL to ROP prediction. To our
knowledge, this is the first application of TL in the context of drilling. We train
base models using real, simulated, and combined data from previously drilled
wells. Then, we reconfigure each model by freezing some model parameters in
order to limit the number of trainable parameters. Each reconfigured base model
is retrained using a small fraction of target-well data, yielding a target model.
This way a high quality target model is available already from the early stage of
drilling operation, see Figure 1. The performance of our TL models is compared
to both the base models and models trained only for the data from the new well.

The paper is organized as follows. In Section 2, we briefly discuss the concept
of TL. In Section 3, we describe the datasets and then proceed with the experi-
mental setup, including the model architecture, input data, and the method for
training and retraining. We also provide an end-to-end sample application of TL
approach. Section 4 presents the results and lays out recommendations based on
these. Section 5 concludes the paper.

2 Transfer learning

Following the notations by Pan and Yang [26], Transfer Learning mainly involves
a domain D and Task T . The domain, denoted by D = {X,PX}, includes two
components: a feature space X and a marginal probability distribution PX ,
where each input instance is denoted by x ∈ X. On the other hand, the task,
denoted by T = {Y, f(·)}, includes all possible labels Y and a predictive function
f(·) that predicts a corresponding label using unseen instances {x∗}s. For a
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two domain scenario, given a source domain Ds and learning task Ts, a target
domain Dt and learning task Tt, where Ds ̸= Dt, or Ts ̸= Tt, TL leverages
learned knowledge from Ts to improve the Tt predictive function. Subscripts s
and t here corresponds to source and target, respectively.

The most common TL technique is fine-tuning [29]. In the context of ANN,
fine-tuning involves reusing the whole network or freezing certain hidden layers
before updating the network weights during retraining for the target task. Fine-
tuning works based on the premise that Deep Learning models learn different
features at different layers. Thus, reusing a pre-trained model for a target task
allows better performance with less training time by starting from “near truth”
parameters than training a new model with randomly initialized parameters.

TL has been widely used both in computer vision and Natural Language Pro-
cessing[26, 37]. This is apparent from the proliferation of pre-trained networks
e.g.,VCG-16 [31], XLNet [38], GPT-3 [7] using large datasets e.g., ImageNet 3,
Giga5 4, and Common Crawl Dataset 5, and reused in domains where data is
expensive or hard to obtain. For example in medical imaging, Shin et al. [30]
fine-tuned AlexNet [20] - a pre-trained network using ImageNet dataset [9] with
more than 14 million images belonging to around 20 thousand categories. They
successfully achieved 85% sensitivity at 3 false positive per patient in thoraco-
abdominal lymph node (LN) detection and interstitial lung disease (ILD) clas-
sification. Another successful application, Bird et al. [6] used a simulated scene
from a computer game to train a model and resulted in an improvement for the
real-world scene classification task.

Pre-trained networks also catalyzed the recent advances in Natural Language
Processing (NLP). For example, Devlin et al. [10] introduced Bidirectional En-
coder Representations from Transformers (BERT), which can be fine-tuned with
adding an output layer to create state-of-the-art models for a wide range of
tasks. Successful applications of BERT include text summarizing [10], modeling
clinical notes and predicting hospital readmission [18], and machine reading
comprehension [10].

The success of TL is apparent from its ubiquitous applications. This moti-
vated websites, such as Hugging Face6 and Model Zoo7, which provide a platform
to access many open-sourced pre-trained networks with ease.

TL has yet to be explored and applied broadly in the oil and gas domain.
Since well-annotated datasets are expensive and difficult to obtain in the oil and
gas industry, TL can be used to make rapid progress in this domain [15].

3 https://www.image-net.org
4 https://catalog.ldc.upenn.edu/LDC2011T07
5 https://commoncrawl.org/the-data/
6 https://huggingface.co
7 https://modelzoo.co/
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3 Experimental setup and data

3.1 Methodology

TL requires the base model to be trained from several unique wells to improve
their generalization capability. We freeze selected layers in these base models
to keep the original weights and allow some to be trainable. These reconfigured
layers are then fine-tuned using a pre-determined percentage of data from target
wells. Hyperparameters during fine-tuning are carefully chosen to prevent van-
ishing or exploding gradients. This happens when the distribution of retraining
data is entirely different, and the learning rate is too high; this impairs the base
model’s performance. In addition, a new model is also trained using the same
retraining data. All these models are then tested using the remaining data from
the target well.

We performed all computations using 2.3 GHz Dual-Core Intel Core i5.

3.2 Datasets

We used well data from three sources namely, Volve field data, Marcellus shale
field data, and synthetic data. Table 1 summarizes the datasets. The well name,
hole size, hole depth range, and the data source type for each dataset are provided
for reference.

In general, when drilling an oil and gas well, bigger holes are drilled first,
followed by smaller holes until they reach the predefined target. This is done to
maintain well integrity, particularly when transitioning to a new geologic for-
mation. Drillers use different drill bits, bit designs, and drilling fluid properties
at each new hole size. This is similar to drilling an entirely new well from an
engineering perspective. Thus, we produce independent datasets by segregating
each data according to hole size from each well. These datasets contain recorded
real-time drilling parameters such as hookload, stand pipe pressure, hole depth,
weight on bit, mud weight, and rotations per minute. These measurements’ fre-
quency varies for every well depending on the equipment used.

In 2018 Equinor publicly shared raw real-time drilling data from 20 wells
found in the Volve field in the North Sea [12], together with well logging data,
surveying data, drilling reports, and other auxiliary information. Pre-processed
Volve drilling logs can be found in a public data repository [35]. For this paper,
we selected drilling data from 7 wells and separated them according to the hole
size. In total, we compiled 12 independent datasets for the experiment. Volve
data has an average sampling frequency of 0.4 Hz, corresponding to a time step
of 2.5 seconds.

Marcellus shale is the most prolific natural gas-producing formation from
the Appalachian basin in the United States [34]. A site owned and operated by
Northeast Natural Energy, LLC provides several horizontal wells drilled in the
Marcellus shale [1]. A specific long horizontal well spanning 2431 meters, with an
average measurement frequency of 0.176 Hz or 5.67 seconds time step, was chosen
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for the current study. This well data allows testing the models’ generalization
and re-usability outside Volve data.

To provide additional training data and investigate the feasibility of using
simulated training data for the TL application, we generated eight synthetic
datasets using a state-of-the-art drilling simulator which includes advanced hy-
draulics, mechanics, and heat transfer models [13]. The well architecture, trajec-
tory, drilling mud properties, drill string configuration, and formation properties
were based on the drilling reports extracted from the Volve public database [12].
The drilling set points (top-drive rotary speed, weight on bit, and flow rate) used
as input to the simulations were based on the values from the Volve recorded
drilling logs compiled by Tunkiel [35]. The simulation outputs were stored as
time-series with a time step of 1 second.

Table 1. Description of Datasets.

Well
name

Hole
size (in)

Depth
range (m)

Dataset
type

Dataset
source type

Test
Case #

F-1 A 8.5 2602-3682 Train & Val. Sim. & Real
F-1 B 12.25 2603-3097 Train & Val. Sim. & Real
F-1 B 8.5 3097-3465 Retrain & Test Real 4
F-1 C 12.25 2662-3056 Retrain & Test Real 2
F-1 C 8.5 3067-4094 Train & Val. Sim. & Real
F-11 A 8.5 2616-3762 Train & Val. Sim. & Real
F-11 B 12.25 2566-3197 Train & Val. Sim. & Real
F-11 B 8.5 3200-4771 Retrain & Test Real 3
F-15 A 17.5 1326-2591 Retrain & Test Real 1
F-15 A 8.5 2656-4095 Train & Val. Sim. & Real
F-9 A 12.25 489-996 Train & Val. Sim. & Real
F-9 A 8.5 1000-1202 Train & Val. Sim. & Real

Marcellus Shale 8.75 1974-4405 Retrain & Test Real 5

3.3 Setup of experiments

Our model starts with an input layer, which receives four input parameters,
followed by three successive pairs of dense and batch normalization layers. By
embedding normalization as part of the model architecture, this prevents inter-
nal covariate shift [19] and causes a more predictable and stable behavior of the
gradients [28], allowing higher learning rates without the risk of divergence [19,
28]. In addition, batch normalization eliminates the need for Dropout [33] for
regularization [19]. We use rectified linear unit [14] as activation function. Fi-
nally, the output layer is a single-output dense layer with mean squared error as
the loss function. A complete and detailed network structure is shown in figure 2.

To predict ROP, we used stand pipe pressure, weight on bit, mud weight, and
rotations per minute (RPM). We based these inputs from the setup described
in Ambrus et al.’s work [4]. In general, when choosing our input parameters,
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Fig. 2. Model Architecture.

two considerations were in place: first, despite using an ANN, the choice of in-
put parameters should still reflect the physics of the drilling process. Second,
selected inputs must always be available. During drilling, hundreds of parame-
ters and metadata are recorded in real-time [36]. The inclusion of many drilling
parameters as inputs to the ANN could be helpful but at the same time dan-
gerous when one or more of these parameters are missing for the current well
due to sensor failure or they were not necessarily recorded during the operation.
Although one might infer the missing values, this would increase the model’s
prediction uncertainty when there are many inferred values.

Eight datasets were selected to build the base models out of the 12 avail-
able well sections from Volve. These were carefully selected to ensure that they
contain values of the upper and lower boundaries of each input and output pa-
rameter. For example, the dataset with the highest ROP and lowest ROP values
should be among the chosen eight.
To avoid overfitting the model, the first 80 percent of each well section is con-
catenated into the training dataset, whereas the remaining 20 percent are used
for validation. This was done to all the three data source types - real, simu-
lated, and combined. The shapes of concatenated training and validation data
are shown in Table 2.
Data were scaled using a MinMaxScaler from Scikit-Learn [27] before passing to
the model. This removes the harmful effects of having different value ranges for
every input variable by scaling all of them to a (0,1) range.

Three separate runs for each data source type were conducted to build base
models while keeping the model’s hyperparameters the same. In particular, batch
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Table 2. Traning and Validation Data Shapes.

Data Source Type TrainX TrainY ValX ValY
Real (333400,4) (333400,1) (83350,4) (83350,1)

Simulated (649503,4) (649503,1) (162376,4) (162376,1)
Combined (982903,4) (982903,1) (245726,4) (245726,1)

size was chosen to be 10000. This is relatively small, around 1 to 3 percent of
each training dataset, to increase variation in batch statistics, thereby enabling
better model generalization during the retraining process [22]. An early stopping
Keras callback [8] was placed to cease training when the validation loss stops
improving after 100 epochs. This allows us to generate two distinct base models
for each data source type: one base model with the best validation loss and
another based on the training loss. Altogether, we train six base models.

The four remaining well sections from real Volve data and the Marcellus shale
horizontal well are used for retrain and test data. A sensitivity analysis was done
by creating independent datasets with different retrain: test data ratios. These
vary from 30:70, 20:80, 10:90, and 5:95, where the smaller partition corresponds
to retraining data. Similar to the data preprocessing used for building the base
model, each dataset is split sequentially and the values are scaled to a (0,1)
range.

During retraining, we kept a similar model architecture to the base models,
except that some layers were frozen. This allows us to retrain the model using
smaller training datasets since fewer parameters are retrainable, and at the same
time, model parameters are not initialized randomly. In addition, since models
are pre-trained, a low learning rate is needed to reach the global minima. In our
case, we used a learning rate of 0.0001 for all instances, with the exception of
test case 4 that used 10−9. Maximum epochs are set at 150000 for tests. Similar
to training the base model, we set up an early stopping at 50 epochs based on
the training loss.

These base models are reconfigured in three ways: freezing the first dense
layer, first and second dense layers, and keeping all dense layers unfrozen. This
gives us 18 reconfigured base models for retraining. All batch normalization lay-
ers were frozen in all these configurations to prevent the risk of vanishing or
exploding gradients. In this context, freezing a layer means keeping the param-
eters learned during the initial training stage. Table 3 shows the number of
trainable and non-trainable parameters for each configuration.

Table 3. Number of trainable and non trainable parameters.

Model configuration Trainable Parameters Non-trainable Parameters
Base Model 8897 384

Zero Frozen Layers 8513 768
One Frozen Layer 8257 1024
Two Frozen Layers 4161 5120
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A randomly initialized new model with similar model architecture and hy-
perparameters was trained for every retraining data configuration. This is to
compare the performance of fine-tuning a pre-trained model with that of a new
model trained from scratch on the same dataset.

3.4 Model Evaluation

We have six unique base models from previous sections, wherein each was recon-
figured in three configurations based on the number of frozen layers. This gives
us 18 unique models on top of the base models plus an entirely new trained
model. In total, for every retraining data configuration, e.g., one test well, with
unique retrain:test ratio, we tested 25 different models.

Model performance is evaluated by computing the mean absolute error (MAE :=
L1) and root-mean-square error (RMSE := L2) for every test data configura-
tion:

Lk =

(
1

N

N∑
i=1

|yi − ŷi|k
) 1

k

(1)

where N is the number for data points, ŷi is the true value, and yi is the predicted
value. In addition, we kept a summary of a moving window MAE by dividing
the test data into ten equal windows with the exact count of data points and
computing MAE at each window. This enables us to measure prediction quality
for various test data sizes. It is also important to emphasize that every well
section data has a varying frequency of measurements and size, e.g., 30 percent
of the well F-1C 12.25 in. section contains fewer data points than the F-11B 8.5
in. section.

3.5 Example of usage

As discussed in Section 3.3, we train six base models then reconfigure by freezing
layers. Subsequently, we derive four different datasets from well F-15A 17.5 in
data. Each dataset differs on the retrain and test ratio as described previously.
Each of the 18 reconfigured base models is then fine-tuned using retraining data
from every dataset. In addition, we train an entirely new model using similar
retraining data. From here, we have a total of 25 distinct models - 6 base models,
18 reconfigured base models, and one new model. These 25 models are then used
for predicting ROP on the test datasets. Having 4 data split ratios from well F-
15A 17.5 gives us a total of 100 test runs. For every test case, MAE is recorded.

4 Results

In Section 4.1, we analyze the results on well F-15A 17.5 in and compare the best
models from several methods, which includes fine-tuning, training of an entirely
new model, and direct use of the base model. Data from the other wells are not
presented due to space constraints of this paper. This well was selected because

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_44

https://dx.doi.org/10.1007/978-3-031-08754-7_44


10 F. Pacis et al.

results obtained on it were representative of both Volve and Marcellus shale test
cases. In Section 4.2, we provide recommendations based on the results of five
test cases. In Section 4.3, we provide results on the generalization capability of
the approach.

4.1 3-way-comparison

After testing 100 models, we plot the predicted vs. expected ROP values plus
a moving MAE window. In each plot, X-axis represents the hole depth, Y-axis
to the left is the ROP with m/hr unit, and Y-axis to the right is the MAE. A,
B, and C plots in Figure 3 show the best model among fine-tuned base models,
base models, and new models, respectively. Model configurations and metadata
of these models can be found in Table 4.

Table 4. Test Case 1: F-15A 17.5 in

Frozen layers BM loss type Source type Retrain (%) Train (%) MAE RMSE
0 Validation Simulated 30 N/A 3.674 4.886
2 Validation Simulated 5 N/A 4.104 5.238
1 Validation Combination 30 N/A 4.165 5.656
2 Validation Simulated 30 N/A 4.234 5.562
1 Validation Simulated 30 N/A 4.268 5.87

*New Model Training Real N/A 30 5.061 5.845
*Base Model Validation Simulated N/A 80 9.091 10.767

Retraining the base model reduces the MAE by 59.6% and 27.4% vs. using the
base model and training an entirely new model, respectively. A relatively close
RMSE to MAE also indicates that the ROP error disperses equitably across the
data. Despite the base model not being trained with the same 17.5-inch hole
size, it outperforms other models by tuning with the current well data. This is
also on top of the fact that model A has fewer trainable parameters. Although
not seen on the plot, the second-best model overall has an MAE of 4.104, despite
only using 5% retraining data and 55% fewer trainable parameters compared to
training a new model. Furthermore, both of the best two models were pre-trained
using simulated data.

4.2 Recommendations based on all test cases

Training data source type. Four out of the five test cases suggest that training
with simulated data provides better result than training with real data in terms
of MAE. One explanation for this could be that predictions are less noisy since
the simulated data is deterministic; thus, it produces better results when re-
trained on a small section of the test set.

Base Model loss type. Four out of the five test cases suggest that the
best model should be based on the best validation loss rather than training
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A.

B.

C.

Fig. 3. ROP predicted by different models for well F-15A 17.5 in. A. Fine tuned model
with TL. B. Base (pre-trained model) without fine-tuning. C. Newly trained model
only using the data from the current well. Orange and blue lines refer to expected
and predicted ROP values, respectively. Red markers are the computed MAE moving
window e.g., one red marker is the MAE of the previous 2500 observations. All data
are plotted against hole depth on the X-axis. Fine-tuned model performed best among
other models with an MAE of 3.674.

loss. This is expected since the early stopping based on the validation loss helps
reduce overfitting on the training data. Although the best retrained model in test
case 3 was obtained using the training loss criterion, the base model using the
validation loss criterion does not come far behind when considering the MAE.

Number of Frozen Layers. Four out of the five test cases suggest that
fine-tuned models always perform the best. Case 4 performed just as well as the
base model. Although, there was no clear relation between the number of frozen
layers and the MAE. Paradoxically, increasing the number of frozen layers also
increased the retraining time by 43 up to 247 percent. Thus, from retraining
time perspective the ROP prediction problem benefits more from a pre-trained
network without frozen layers. Another observation is that models with zero,
one, and two frozen layers took an average retraining time of 7, 12, and 15
minutes, respectively, versus base models’ 22 minutes.

Retraining data percent. As mentioned previously, every test well has a
different length; therefore, even having the same retraining data percentage, the
number of data points would still vary. There is no clear correlation between the
number of data points and retraining data percentage for the best fine-tuned
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model based on the five test cases, although one could say that there could be a
slight trade-off between the accuracy of the model and the length of the well to
be predicted.

During our experiments we also observed that TL was sensitive to the choice
of base model training data and learning rate. However the detailed analysis is
out of the scope of this paper.

4.3 Test outside Volve Data
We tested the approach on the Marcellus shale dataset to evaluate the gen-
eralization and re-usability of the TL approach. This well is entirely distinct
from Volve data in terms of well profile (horizontal), type of formation (shale),
location (onshore well), and equipment used. This is analogous to recognizing be-
tween breeds of dogs and breeds of cats for the computer vision domain. Clearly,
the best retrained model reduced the MAE by 29% and 19% when compared
with the newly trained model and base model, respectively. Relative to other
test cases from Volve data, computed MAE is higher because of noise and lower
measurement frequency in the Marcellus data. On top of improving the MAE,
the retrained model only used 20% of retraining data while decreasing the train-
able parameters by 10%. Furthermore, this result was achieved by training the
base model with simulated data. This demonstrates the potential in using syn-
thetic data generated with a high-fidelity drilling simulator for training the ANN
ROP model that can be reconfigured for real operations with minimal amount
of re-training.

5 Conclusions
We presented the application of TL for ROP prediction in oil and gas drilling.
We trained, retrained, and tested a total of 100 models for each of the five test
wells. Based on MAE evaluation, the TL approach for four out of five test wells
outperforms both the newly trained model and the non-fine-tuned base model.
For the fifth well the TL was on par with the traditional approach.

We explored the best model configurations based on the five test cases. In
most cases the best results were obtained with the base models trained on the
simulated data. Moreover the validation loss seems to be a good indicator of the
model’s performance on the new well. During fine-tuning, pre-trained models
with zero frozen layers converge faster, although there was no clear relation
between the MAE and the number of frozen layers. Despite uncertainty in the
optimal number of frozen layers and retraining data percentage, results indicate
that transfer learning is a valuable element in developing an adaptable, reusable,
and more general ROP prediction model.

After successfully addressing the initial bottlenecks, new practical issues were
identified. We noticed cases of negative transfer where some retrained models
performed worse than their base model. The approach was also sensitive to the
learning rate. Further work will focus on model optimization towards stability
and improved accuracy while considering all practical bottlenecks.
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