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Abstract. The main idea of our Goal-Oriented Adaptive (GOA) strat-
egy is based on performing global and uniform h- or p-refinements (for
h- and p-adaptivity, respectively) followed by a coarsening step, where
some basis functions are removed according to their estimated impor-
tance. Many Goal-Oriented Adaptive strategies represent the error in a
Quantity of Interest (QoI) in terms of the bilinear form and the solu-
tion of the direct and adjoint problems. However, this is unfeasible when
solving indefinite or non-symmetric problems since symmetric and pos-
itive definite forms are needed to define the inner product that guides
the refinements. In this work, we provide a Goal-Oriented Adaptive (h-
or p-) strategy whose error in the QoI is represented in another bilin-
ear symmetric positive definite form than the one given by the adjoint
problem. For that purpose, our Finite Element implementation employs
a multi-level hierarchical data structure that imposes Dirichlet homo-
geneous nodes to avoid the so-called hanging nodes. We illustrate the
convergence of the proposed approach for 1D Helmholtz and convection-
dominated problems.

Keywords: Goal-Oriented Adaptivity · Pseudo-dual Operator · Unre-
finements · Finite Element Method · Multi-Level

1 Introduction

One of the main challenges of Finite Element Methods (FEM) is to obtain accu-
rate solutions with low memory requirements. Realistic models are often geomet-
rically complex, and they usually exhibit inhomogeneities. Energy-norm-based
adaptive techniques are often employed to model these complex problems. How-
ever, many engineering applications demand accurate solutions only in specific
domain areas, for example, when the objective is to simulate some measurements
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at particular receivers. In these scenarios, GOA strategies have shown success
for more than twenty years [2,17].

The objective of goal-oriented adaptivity is to build an optimal finite-element
grid that minimizes the size of the problem needed to achieve certain tolerance
errors for some practical QoI, which is expressed in terms of a linear functional.
It has been widely used across different areas of knowledge, including electro-
magnetic (EM) applications [1,12,16], Cahn–Hilliard-Navier–Stokes systems [10],
visco-elasticity [19], and fluid-structure interactions [11]. Traditional approaches
represent the error in the QoI by using the direct and adjoint solutions and
the global bilinear form of the problem and dividing it in terms of local and
computable quantities that are used to guide local refinements (see e.g. [15]).

Here, we follow a different approach. Based on Darrigrand et al. [4], we define
an alternative pseudo-dual operator to represent the residual error of the adjoint
problem. This new representation, which exhibits better properties than the
original bilinear form (e.g., positive definiteness), has proved successful [5,13]
and allows to compute the error in the QoI in a way similar to the classical
approaches.

The present work combines the energy-based approach introduced in [3]
(which uses the data structure proposed by Zander et al. [20,21,22]) and an
alternative pseudo-dual operator for representation of the error in the QoI [4].
By doing so, we extend the Darrigrand et al. approach [3] to the context of h-
and p-GOA algorithms.

This document is organized as follows: Section 2 describes the GOA strategy
and the employed error estimators. Section 3 is devoted to the numerical results,
and Section 4 summarizes the main conclusions.

2 Proposed Goal-Oriented Adaptive Algorithms

The h- and p-adaptive algorithms proposed in this work follow the next refine-
ment pattern: first, we perform a global and uniform h- or p-refinement (for
the h- and p-adaptive versions, respectively). Then, we perform a coarsening
step, where some basis functions are removed. This procedure is illustrated in
Algorithm 1, and it was already introduced in [3] in the context of energy-norm
adaptivity. The critical part is the coarsening step that we describe next.

Algorithm 1: Adaptive process

Input: An initial mesh
Output: A final adapted mesh
while error > tolerance do

Perform a global and uniform (h or p) refinement;
Update the error;
Execute the coarsening step (Algorithm 2) to the mesh;

end
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Optimal unrefinements are performed following an element-by-element ap-
proach. Using the multi-level data structures proposed in Zander et al. [20,21,22],
we compute element-wise error indicators of all active elements, i.e., those ele-
ments that do not have sons, or if they do, all new nodes of the sons have
homogeneous Dirichlet boundary conditions. These element-based error indica-
tors are one number per element for the h-adaptive version and d numbers for
the p-adaptive version, where d is the dimension. The coarsening step proce-
dure is depicted in Algorithm 2. The critical step here is the computation the
element-wise error indicators, which we describe in the following subsection.

Algorithm 2: Coarsening processs

Input: A given mesh M .
Output: An unrefined adapted mesh, also denoted as M .
do

Solve the problem on M ;
Compute the element-wise error indicators for the active elements;
Mark the elements whose indicators are relatively small;
Update M by unrefining the marked elements;
If nothing has been marked, escape;

end ;

2.1 Error indicators

We first introduce our boundary value problem in variational form using an
abstract formulation:

Find u ∈ V such that

b(u, v) = f(v), ∀v ∈ V. (1)

Here, f is a linear form, b represents a bilinear form and the space V is assumed
to be V = V (Ω) := {u ∈ H1(Ω) : u = 0 on ΓD, u

′ = 0 on ΓN}, where Ω is a
one-dimensional (1D) computational domain, and ΓD and ΓN are the parts of
the boundary where we impose homogeneous Dirichlet and Neumann boundary
conditions.

The above forward problem has an associated adjoint (or dual) operator,
whose formulation is given by:

Find w ∈ V such that

b(v, w) = l(v), ∀v ∈ V. (2)
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where l is a linear functional that represents the QoI.
The adjoint problem is often employed in the literature to guide goal-oriented

refinements (see, e.g., [14]). However, for the case of indefinite or non-symmetric
problems, we further need to introduce an inner product (symmetric and positive
definite form) to guide the refinements.

To overcome this issue, we first define w̃ as a projection of the dual solution
w into a given subset of basis functions by simply removing the remaining basis
functions’ degrees of freedom (DoFs). For the p-adaptive case, the subset of basis
functions results from a global p-unrefinement from the current mesh. Thus, w̃
consists of taking w and replacing the DoF of the highest-order basis functions
of each element with zero. In the h-adaptive case, the subset of basis functions
results from a global h-unrefinement of the given mesh. Such projections can be
trivially implemented in the context of the multi-level data structures proposed
in Zander et al. [20,21,22]; but not when using traditional data structures like

those described in [7,8,9]. Then, we introduce a pseudo-dual bilinear form b̂, in
our case, defined by the 1D Laplace operator (although it is possible to select
other symmetric positive definite bilinear forms). Finally, we solve the following
residual-based pseudo-dual problem:

Find ε such that

b̂(v, ε) = l(v)− b(v, w̃), ∀v ∈ V. (3)

The idea of using an elliptic error representation was already introduced by
Romkes et al. [18] and applied by Darrigrand et al. [4] in the context of traditional
data structures. However, it required dealing with two grids (fine and coarse)
and projection based interpolation operators [6,7,8], which highly complicated
its implementation and mathematical analysis. In here, we define problem (3)
using simply w̃ as the projection of w.

Thus, we define EK as the error indicator associated with element K:

EK :=
∣∣∣b̂(ēK , ε)∣∣∣ , (4)

where ēK is defined for the h-adaptive version as the DoF of u multiplied by the
basis function whose support is within the father of the active element K. For
the p-version, ēK is the DoF of u multiplied by the highest-order basis function
whose support is contained within the active element K.

If we assume quasi-orthogonality of our multi-level basis functions, that is,
b(ēK , w̃) ' 0, then:

EK :=
∣∣∣b̂(ēK , ε)∣∣∣ ' ∣∣∣b(ēK , w̃) + b̂(ēK , ε)

∣∣∣ ' ∣∣∣b(eK , w̃) + b̂(eK , ε)
∣∣∣ = |l(eK)| . (5)

In the above, we have used equation (3) and defined eK as the error due to
unrefining (in h or p) the element K.

The above error indicators can be extended to 2D and 3D. To account for the
possibility of having multiple basis functions in the definition of ēK , we divide
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the error indicators by the number of DoFs in ēK . In 1D, this number is simply
one.

3 Numerical Results

To illustrate the performance of our adaptive strategies, we consider two prob-
lems, governed by Helmholtz and convection-dominated equations. We provide
the evolution of the relative error in the QoI for h- and p-adaptivity and for
different values of the PDE parameters. To define the relative error in the QoI,
we compute l(u) on a globally refined mesh. Then, we describe the relative error
as follows:

erel =
|l(u)− l(uc)|
|l(u)|

· 100, (6)

where l(uc) is the QoI associated with the adapted mesh.

3.1 Helmholtz goal-oriented problem

Let us consider the following wave propagation problem:

Find u such that,

−u′′ − k2u = 1(0, 25 )
in (0, 1), (7)

u(0) = 0, (8)

u′(1) = 0. (9)

We define the QoI as l(u) = 5 ·
∫ 4

5
3
5

u dx. Figures 1 and 2 show the evolution of the

relative error in the QoI by using h- and p-adaptivity, respectively. Note that the
larger the number of DoFs per wavelength, the faster the decrease of the relative
error in the QoI. For example, in Figure 1, for k = 7 ·2π, 10 DoFs per wavelength
are sufficient to enter into the so called asymptotic regime. In contrast, for k =
28 · 2π, we need to consider at least 40 DoFs per wavelength. In Figure 2, we
select the initial mesh size such that the number of DoFs per wavelength is at
least 3. This way, we satisfy the Nyquist rate. Both Figures 1 and 2 show optimal
convergence rates in both h- and p-adaptivity. As a curiosity, we observe that the
curves in Figure 1 are parallel, while the ones in Figure 2 coincide. This occurs
due to dispersion (pollution) error, which quickly disappears with the p-method.
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Fig. 1: Evolution of the relative error in the QoI by using h-adaptivity. Initial
mesh size h = 1

30 and uniform p = 1.
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Fig. 2: Evolution of the relative error in the QoI by using p-adaptivity. Uniform
mesh size h = 1

30 .
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Fig. 3: Solutions with k = 7 · 2π problem as given after the h-adaptive process.

Figure 3 shows the solutions for the case k = 7 · 2π. We also provide the
corresponding h- and p-adaptive meshes. For the p-adaptive mesh, we show the
mesh obtained in the 6th iteration, containing high approximation orders. To
visualize the h-adaptive mesh, we show the mesh obtained in the 5th iteration.
Finally, we show the solutions corresponding to the 6th iteration, which contains
small localized values of the mesh size h.

3.2 Convection-dominated goal-oriented problem

Let us consider the boundary value problem associated with steady convective-
diffusive transport:

Find u such that,

−εu′′ + σ · u′ = 1(0,1) in (0, 1), (10)

u(0) = u(1) = 0,

with σ = 1, and 0 < ε � 1 the diffusive coefficient. We define the QoI as

l(u) = 5 ·
∫ 1

4
5
∇u dx.

In Figures 4 and 5, we represent the evolution of the relative error in the
QoI by using h- and p-adaptivity, respectively. We observe optimal convergence
rates. We note that the smaller the diffusive coefficient ε, the larger the number
of DoFs to reach the convergence rates.
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Fig. 4: Evolution of the relative error in the QoI by using h-adaptivity. Initial
mesh size h = 1

30 and uniform p = 1.

30 50 100 250 450
10−14

10−10

10−6

10−2

102

Number of DoFs

R
el

a
ti

v
e

er
ro

r
in

th
e

Q
o
I

(%
)

ε = 10−3 ε = 10−4

ε = 10−5

Fig. 5: Evolution of the relative error in the QoI by using p-adaptivity. Uniform
mesh size h = 1

30 .

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_43

https://dx.doi.org/10.1007/978-3-031-08754-7_43


1D Painless Multi-Level Automatic Goal-Oriented h and p... 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

direc
t

ad
joint

x

u
(x

)

p-Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Approximation order p

h-Mesh

Fig. 6: Solutions with ε = 10−3 problem as given after the h-adaptive process.

Figure 6 shows the solutions for the case ε = 10−3. We also provide the
meshes and the solutions corresponding to the last iteration in both h and p
cases.

4 Conclusions

We propose h- and p-GOA strategies for possibly non-elliptic problems. These
adaptive algorithms are simple-to-implement because they take advantage of
multi-level data structures with hierarchical basis functions that avoid the prob-
lem of hanging nodes altogether.

The main idea of this approach consists of performing first a global and uni-
form refinement followed by a coarsening step, where some basis functions are
removed. To select which basis functions are eliminated, we employ a representa-
tion of the error in the QoI that uses an unconventional symmetric and positive
definite bilinear form.

1D numerical results show a proper convergence for Helmholtz and convection-
dominated GOA problems when using the Laplace operator’s pseudo-dual prob-
lem. This adaptive strategy can be easily extended to 2D and 3D problems, and
it can be further exploited in other indefinite and/or non-symmetric problems.
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