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Abstract. In this paper, we initiate the study of isogeometric analysis
(IGA) of a quantum three-body problem that has been well-known to
be difficult to solve. In the IGA setting, we represent the wavefunctions
by linear combinations of B-spline basis functions and solve the prob-
lem as a matrix eigenvalue problem. The eigenvalue gives the eigenstate
energy while the eigenvector gives the coefficients of the B-splines that
lead to the eigenstate. The major difficulty of isogeometric or other finite-
element-method-based analyses lies in the lack of boundary conditions
and a large number of degrees of freedom required for accuracy. For a
typical many-body problem with attractive interaction, there are bound
and scattering states where bound states have negative eigenvalues. We
focus on bound states and start with the analysis for a two-body prob-
lem. We demonstrate through various numerical experiments that IGA
provides a promising technique to solve the three-body problem.

Keywords: Isogeometric analysis · Three-body problem · Bound state

1 Introduction

While there are still unsolved questions in the classical three-body problem [5,
26], the quantum mechanical three-body problem also has unanswered questions
[15, 34, 20]. Accurate and rigorous solutions are highly desirable both for an-
swering these open questions as well as for studies of three-body correlations
within various many-body systems. The two-body problem is generally consid-
ered as “solved" due to the momentum conservation that leads to a second-order
ordinary differential equation which can be solved effectively. For three-body
problem, the space is six-dimensional in the center of mass system. The total
angular momentum conservation leads to three coupled second-order nonlinear
differential equations in classical mechanics [27]. In quantum mechanics, we have
a more complicated system that admits no analytic solution in general and exist-
ing numerical methods are not satisfactory in the sense of robustness, efficiency,
and reliability.

In quantum chemistry and molecular physics, the Born–Oppenheimer (BO)
approximation has been the most well-known and widely-used mathematical ap-
proximation since the early days of quantum mechanics [3, 28, 8, 32]. The method
is based on the assumption that the nuclei are much heavier than the electrons
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which consequently leads to that the wave functions of atomic nuclei and elec-
trons in a molecule can be treated separately. For instance, BO was used in [18,
16] to study the Efimov effect in few-body systems. BO was adopted in [21,
22] recently to establish the universality in a one-dimensional three-body sys-
tem. A more efficient numerical method based on BO was developed using the
tensor-product structure [35]. BO has been the standard method to describe the
interaction between electrons and nuclei but it can fail whenever the assump-
tion fails, for example, in graphene [30]. When the mass ratios of the interacting
bodies are close to one, the assumption fails and BO is generally inaccurate.
Other methods such as the pseudospectral method based on Fourier analysis
[4] and Skorniakov and Ter-Martirosian (STM) method based on exact integral
equations [33] have been developed to obtain the three-body bound states for
arbitrary mass ratios.

In this paper, we develop a general numerical method to solve one-dimensional
quantum two- and three-body problems with arbitrary mass ratios and any
interaction potentials that lead to bound states. With this goal in mind, we
initiate the study of finite element analysis (FEA) based methods to find the
bound states of three-body systems. In particular, we adopt the more advanced
method isogeometric analysis (IGA) for this purpose. IGA, first developed in
[23, 11], has been widely-used as a numerical analysis tool for various simula-
tions that are governed by partial differential equations (PDEs). IGA adopts the
framework of classic Galerkin FEA and uses B-splines or non-uniform rational
basis splines (NURBS) instead of the Lagrange polynomials as its basis func-
tions. These basis functions have higher-order continuity (smoothness) which
consequently improves the accuracy of the FEA numerical approximations. The
work [10] applied IGA to study a structural vibration problem that is modeled
as a Laplacian eigenvalue problem. It has been shown that IGA improved the
accuracy of the spectral approximation significantly compared with FEA [25].
Further advantages of IGA over FEA on spectral accuracy have been studied
in [24, 31]. With the advantages in mind, we adopt IGA to solve the quantum
three-body problem as a second-order differential eigenvalue problem.

The rest of this paper is organized as follows. Section 2 presents the two- and
three-body problems under consideration. We then unify these two problems as
a single differential eigenvalue problem in one or two dimensions where 1D refers
to the two-body problem and 2D refers to the three-body problem. We show
an example of solutions to a two-body problem for both bound and scattering
states, which serves as a motivation of the proposed method that solves only
the bound states over an approximate finite domain. We then present the IGA
discretization method in Section 3 to solve the unified problem for the bound
states. Section 4 collects and discusses various numerical tests to demonstrate
the performance of the proposed method. We also perform the numerical study
of the impact of domain size on the approximation accuracy of the bound states.
Concluding remarks are presented in Section 5.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_42

https://dx.doi.org/10.1007/978-3-031-08754-7_42
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2 The two- and three-body problems

In this section, we first present the heavy-light two-body and heavy-heavy-
light three-body problems that are modeled as the dimensionless stationary
Schrödinger equations recently studied in [21, 22]. We then generalize the prob-
lems for any mass ratios and unify them as a single differential eigenvalue prob-
lem. A numerical example is followed to show the bound and scattering states
of a two-body problem. The shape of bound states gives a motivation to pose
the differential eigenvalue problem on a finite domain with a size to be specified
depending on the differential operator and accuracy tolerance.

The heavy-light quantum two-body system with an attractive interaction
via a potential of finite range, after eliminating the center-of-mass motion, is
modeled as a dimensionless stationary Schrödinger equation[

− 1

2

∂2

∂x2
− v(x)

]
ψ(2) = E(2)ψ(2), (1)

where E(2) is the binding energy and ψ(2) is the two-body wave function. The
corresponding three-body system is modeled as[

− αx
2

∂2

∂x2
− αy

2

∂2

∂y2
− v(x+ y/2)− v(x− y/2)

]
ψ = Eψ, (2)

where E is the eigenenergy and ψ = ψ(x, y) is the three-body wave function
describing the relative motions. The coefficients

αx =
1/2 +mh/ml

1 +mh/ml
, αy =

2

1 +mh/ml
, (3)

where mh denotes the mass of two heavy particles and ml denotes the mass of
the light particle. The potential

v(ξ) = βf(ξ) (4)

with β > 0 denoting a magnitude and f denoting the shape of the interac-
tion potential. We assume that the f is symmetric and describes a short-range
interaction, that is, |ξ|2f(|ξ|)→ 0 as |ξ| → ∞.

2.1 The unified problem

The two-body problem (1) is posed on an infinite domain Ω = R while the three-
body problem (2) is posed on Ω = R2. Mathematically, problems (1) and (2) are
differential eigenvalue problems where the differential operator is a Hamiltonian.
Moreover, we observe that (1) is of one variable while (2) is of two variables which
can be regarded as 1D and 2D spatial variables, respectively. With this in mind,
we unify problems (1) and (2) to obtain a differential eigenvalue problem

−∇ · (κ∇u)− γu = λu ∀ x ∈ Ω, (5)
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where ∇ is the gradient operator, ∇· is the divergence operator. λ = E(2), γ =
v(x), κ = 1

2 in 1D while λ = E, γ = v(x+y/2)+v(x−y/2) and κ = (αx2 , 0; 0,
αy
2 )

being a diagonal matrix in 2D. Herein, u denotes an eigenstate.
From now on, we focus on the unified problem (5). There are three major

difficulties in solving this problem using a Galerkin FEA-based discretization
method.

– (a) The attractive interaction may lead to negative eigenvalues. Consequently,
the discretization of the differential operator L = −∇ · (κ∇) − γ leads to a
stiffness matrix that is not necessarily positive-definite. This in return brings
a potential issue when solving the resulting linear algebra problem.

– (b) The domain Ω is infinite. This makes it impossible to discretize the
domain with a finite number of elements with each element being of finite
size.

– (c) There are no boundary conditions provided. A Galerkin FEA-based dis-
cretization method requires setting appropriate boundary conditions for the
resulting linear algebra system to be non-singular.

For (a), an eigenvalue shift will resolve the issue. That is, we rewrite −∇ ·
(κ∇u)− γu = λu by adding a positive scale to obtain −∇ · (κ∇u)− (γ− γ0)u =
(λ+ γ0)u where γ0 > 0 is a constant such that γ − γ0 < 0 for all x ∈ Ω. With a
slight abuse of notation, the problem (5) can be rewritten as

−∇ · (κ∇u) + γu = λu ∀ x ∈ Ω. (6)

To overcome the difficulties (b) and (c), we first present an example of a solution
to the two-body problem in the next subsection.

2.2 A solution example of the two-body problem

For attractive interaction, the eigenenergies for certain eigenstates can be neg-
ative. For a potential vanishing at ±∞, a negative eigenvalue implies a bound
state while a positive eigenvalue implies a scattering state [19].

Figure 1 shows an example of state solutions to the two-body problem (1)
with κ = 1/2, potential f(ξ) = e−ξ

2

and β = 1 for the left plot while β = 2 for
the right plot. The bound states eigenenergies are marked in the figure. Herein,
we apply IGA with 5000 elements and C6 septic B-spline basis functions. We
present the details of the IGA method in the next section. We observe that there
is one bound state for β = 1 and two bound states for β = 2. All other states are
scattering states. When x → ±∞, the wavefunctions go to zeros exponentially
fast for bound states while they do not go to zeros for scattering states. A
theoretical explanation can be found in [1].

In this paper, our goal is to find the eigenenergies and eigenstates for bound
states. In the case of β = 1, the bound state solution decays to zero approxi-
mately at x = ±10 with an error of 5.9 × 10−5. We observe similar behaviour
for the two bound states of the case β = 2. This decaying behaviour provides an
insight to overcome the difficulties (b) and (c) listed in section 2.1. The idea is
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Fig. 1. Bound and scattering states of two-body problems.

that for a given tolerance ε > 0, we propose to solve the problem (6) on a finite
domain Ωε = [−xε,xε]d, d = 1, 2 with homogeneous boundary condition

u = 0, ∀ x ∈ ∂Ωε. (7)

Remark 1. For smaller error tolerance, one expects to apply a larger finite do-
main. A detailed study is presented in section 4.2. We also point out that a
simple transformation such as x̂ = tanh(x) that transfers the infinite domain Ω
to a finite domain Ω̂ = (−1, 1)d, d = 1, 2 can not avoid the difficulties of (b) and
(c) listed in section 2.1.

3 Isogeometric analysis

In this section, we present the IGA method for the unified problem (6) on Ωε
supplied with the boundary condition (7). We also give an a priori error estimate
for the bound states and their eigenenergies.

3.1 Continuous level

Let Ωε = [−xε,xε]d ⊂ Rd, d = 1, 2 be a bounded domain with Lipschitz bound-
ary ∂Ωε. We adopt the standard notation for the Hilbert and Sobolev spaces.
For a measurable subset S ⊆ Ωε, we denote by (·, ·)S and ‖ · ‖S the L2-inner
product and its norm, respectively. We omit the subscripts when clear. For an
integer m ≥ 1, we denote the Hm-norm and Hm-seminorm as ‖ · ‖Hm(S) and
| · |Hm(S), respectively. In particular, we denote by H1

0 (Ωε) the Sobolev space
with functions in H1(Ωε) that are vanishing on the boundaries.

The variational formulation of (6) is to find eigenvalue λ ∈ R+ and eigenfuc-
tion u ∈ H1

0 (Ωε) with ‖u‖Ωε = 1 such that

a(w, u) = λb(w, u), ∀ w ∈ H1
0 (Ωε), (8)
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6 Q. Deng

where the bilinear forms are defined as for v, w ∈ H1
0 (Ωε)

a(v, w) := (κ∇v,∇w)Ωε + (γv, w)Ωε , b(v, w) := (v, w)Ωε . (9)

The eigenvalue problem (8) with γ = γ(x) > 0,∀x ∈ Ωε, has a countable set
of positive eigenvalues (see, for example, [6, Sec. 9.8])

0 < λ1 < λ2 ≤ λ3 ≤ · · ·

with an associated set of orthonormal eigenfunctions {uj}∞j=1. Thus, there holds
(uj , uk) = δjk, where δjk = 1 is the Kronecker delta. As a consequence, the
eigenfunctions are also orthogonal in the energy inner-product as there holds
a(uj , uk) = λjb(uj , uk) = λjδjk.

3.2 IGA discretized level

At the discretized level, we first discretize the domain Ωε with a uniform tensor-
product mesh. We denote a general element as τ and its collection as Th such that
Ωε = ∪τ∈Thτ . Let h = maxτ∈Th diameter(τ). In the IGA setting, for simplicity,
we use the B-splines. The B-spline basis functions in 1D are given as the Cox-de
Boor recursion formula; we refer to [12, 29] for details. Let X = {x0, x1, · · · , xm}
be a knot vector with a nondecreasing sequential knots xj . The j-th B-spline
basis function of degree p, denoted as φjp(x), is defined recursively as

φj0(x) =

{
1, if xj ≤ x < xj+1,

0, otherwise,

φjp(x) =
x− xj

xj+p − xj
φjp−1(x) +

xj+p+1 − x
xj+p+1 − xj+1

φj+1
p−1(x).

(10)

A tensor-product of these 1D B-splines produces the B-spline basis functions in
multiple dimensions. We define the multi-dimensional approximation space as
V hp ⊂ H1

0 (Ωε) with:

V hp = span{φjp}
Nh
j=1 =

{
span{φjxpx(x)}

Nx
jx=1, in 1D,

span{φjxpx(x)φ
jy
py (y)}

Nx,Ny
jx,jy=1, in 2D,

where px, py specify the approximation order in each dimension. Nx, Ny is the
total number of basis functions in each dimension and Nh is the total number of
degrees of freedom. The isogeometric analysis of (6) in variational formulation
seeks λh ∈ R and uh ∈ V hp with ‖uh‖Ωε = 1 such that

a(wh, uh) = λhb(wh, uh), ∀ wh ∈ V hp . (11)

3.3 Algebraic level

At the algebraic level, we approximate the eigenfunctions as a linear combination
of the B-spline basis functions, i.e.,

uh =

Nh∑
j=1

νjφ
j
p,
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where νj , j = 1, · · · , Nh are the coefficients. We then substitute all the B-spline
basis functions for wh in (11). This leads to the generalized matrix eigenvalue
problem

KU = λhMU, (12)

where Kkl = a(φkp, φ
l
p),Mkl = b(φkp, φ

l
p), and U is the corresponding represen-

tation of the eigenvector as the coefficients of the B-spline basis functions. The
homogeneous Dirichlet boundary condition (7) can be set by removing the rows
and columns corresponding to the degrees of freedom associated with the nodes
at the boundary. This matrix eigenvalue problem is to be solved in a computing
program.

3.4 A priori error estimates

IGA is a Galerkin finite element discretization method. On a rectangular do-
main with tensor-product grids, the only difference of IGA from the classical
FEA is the basis functions. FEA adopts C0 polynomials as basis function while
IGA adopts Ck, k ≥ 1 polynomials. We observe that C0 is a larger space, i.e.,
Ck(Ωε) ⊂ C0(Ωε). In general, for an a priori error estimate that is established in
the Galerkin FEA framework, the estimate also holds for IGA. Thus, we expect
optimal convergence rates for the eigenvalues and eigenfunctions as in FEA [9,
2, 17]. We present the following estimate without a theoretical proof. Instead, we
show numerical validation in Section 4.

Given the mesh configuration and IGA setting described above, let (λj , uj) ∈
R+ × H1

0 (Ω) solve (8) for bound states and let (λhj , u
h
j ) ∈ R+ × V hp solve (11)

for bound states with the normalizations ‖uj‖Ωε = 1 and ‖uhj ‖Ωε = 1. Assuming
elliptic regularity on the operator L = −∇· (κ∇)+γ and high-order smoothness
of the eigenfunctions uj on Ωε, there holds:∣∣λhj − λj∣∣ ≤ Ch2p, |uj − uhj |H1(Ω) ≤ Chp, (13)

where C is a positive constant independent of the mesh-size h. We remark that
these estimates only hold for bound states and do not necessarily hold for scat-
tering states.

4 Numerical experiments

In this section, we present various numerical examples to demonstrate the per-
formance of IGA. We first show the IGA approximation optimal convergence
accuracy with a domain Ωε of large size. Then we study the impact of the do-
main size on accuracy and give an approximate formula that determines the size
of the domain given a certain accuracy tolerance.
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4.1 IGA discretization accuracy

We focus on the two- and three-body problems with a potential with polynomial
decay

f(ξ) =
1

(1 + ξ2)3
(14)

of the cube of a Lorentzian and one with exponential decay

f(ξ) = e−ξ
2

(15)

of a Gaussian. For these potentials, finding the exact analytical solutions is
impossible. For the purpose of characterizing the errors, we use, as a reference
solution to the exact one, the solution of IGA with a septic C6 B-spline basis
functions and a fine mesh. We focus on the eigenvalue error that is defined as

ej = |λhj − λ̂j |, (16)

where λhj is an IGA eigenvalue and λ̂j is a reference eigenvalue that is of high
accuracy approximating the exact one λj .

Figure 2 shows the eigenvalue error convergence rates for IGA of the two-
body problem with κ = 1

2 in 1D. We consider C0 linear, C1 quadratic, and C2

cubic IGA elements. We study the problem with both potentials (14) and (15)
and a fixed magnitude β = 1. For both potentials (14) and (15), there is one
bound state. The state reference eigenvalue is λ̂1 = −0.31658012845 for (14)
and λ̂1 = −0.47738997738 for (15), respectively. We solve the problem for the
bound state using C6 septic IGA with 5000 uniform elements over the domain
Ωε = [−20, 20]. We observe optimal error convergence rates in all the scenarios.
This confirms the theoretical prediction (13) in section 3.4.

Now we consider a case where there are two bound states in the two-body
problem. Let β = 5 and we apply a potential of polynomial decay (14). Figure 3
shows the two bound states solutions and their eigenenergies are −2.9149185630
and −0.25417134380. Herein, the numerical eigenstates are computed using C6

septic IGA with 5000 uniform elements over the domain Ωε = [−20, 20]. The
plot shows the eigenstate over [−10, 10] for better focus while the problem is
solved over the larger domain Ωε = [−20, 20] for high accuracy.

Figure 4 shows the eigenenergy error convergence rates of the problem de-
scribed above (also shown in Figure 3). Again, we observe optimal error con-
vergence rates that verify the theoretical prediction. Moreover, for IGA with
higher-order elements, the eigenvalue errors reach small errors faster with coarser
meshes. This validates that the reference solutions obtained by using C6 septic
IGA with 5000 elements are of high accuracy and can be used as highly accurate
approximations to the exact solutions.

4.2 A study on domain size

For bound states of the two-body problems as discussed in section 2.2, the state
values approach zero exponentially fast. The IGA discretization requires a finite
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Fig. 2. Eigenvalue error convergence rates of IGA for the two-body problem with β = 1
on a domain Ωε = [−20, 20]. The potential has polynomial decay (14) for the left plot
while exponential decay (15) for the right plot.
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Fig. 3. The bound states of the two-body problem with β = 5 and a potential of
polynomial decay (14).

domain with homogeneous boundary condition (7). The accuracy depends on
the domain size xε for Ωε = [−xε, xε].

To study the impact of the domain size xε on the accuracy, we apply the
high-accuracy IGA method with C6 septic B-spline elements. We apply uniform
mesh grids with a fixed grid size h = 0.01. This setting of using a high-order
element with fine grid size is to guarantee that the errors are dominated by the
choice of the domain size. Figure 5 shows how the eigenvalue errors decrease
when the domain size xε increases. We set κ = 1/2 in (6) and the potential
magnitude β = 1. The left plot of Figure 5 shows that the eigenvalue error

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_42

https://dx.doi.org/10.1007/978-3-031-08754-7_42


10 Q. Deng

-2 -1.5 -1 -0.5

log(h)

-10

-8

-6

-4

-2
lo

g
(|

1h
 -

 
1
|)

-2 -1.5 -1 -0.5
log(h)

-10

-8

-6

-4

-2

lo
g

(|
2h
 -

 
2
|)

C
0
 linear IGA

slope=2.0

C
0
 linear IGA

slope=2.0

C
1
 quadratic IGA

slope=4.2

C
1
 quadratic IGA

slope=4.1

C
2
 cubic IGA

slope=6.9

C
2
 cubic IGA

slope=6.6

Fig. 4. Eigenvalue error convergence rates of IGA for the two-body problem with β = 5
and a polynomially decaying potential (14) on a domain Ωε = [−20, 20]. The left plot
shows the eigenenergy errors of first bound state while the right plot shows these of
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Fig. 5. Eigenvalue errors versus domain size xε for the two-body problem with poly-
nomially decaying potential (14) (left plot) and exponentially decaying potential (15)
(right plot).

decays exponentially when xε increases for the potential (14) while the right plot
of Figure 5 shows that of the potential (15). The fitted functions that establish
the relation between the error and the domain size are e1 = 10−0.72xε+0.37 and
e1 = 10−0.87xε+0.61 for (14) and (15), respectively. Figure 6 shows the case
where there are two bound states. Therein, potential (15) is used with β = 5.
We observe a similar behaviour. The errors of the ground state reach an order of
10−12 when xε ≥ 6.5. This is due to that the IGA discretization error dominates
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the overall error (from discretization and approximation of the domain). The
fitted functions give guidance for choosing the domain Ωε appropriately. For
example, for the two-body problem with a potential (15) and β = 5, the fitted
function for the second bound state (a larger domain is required to compute this
mode) is e2 = 10−0.68xε+0.69. Thus, to achieve an accuracy of error 10−15, we
set 10−15 = 10−0.68xε+0.69 and solve for xε to get the domain Ωε = [−xε, xε] =
[−23.1, 23.1]. This means that we require to solve the problem with a minimal
domain size xε = 23.1 to get an accuracy of order 10−15.
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Fig. 6. Eigenvalue errors versus domain size xε for the two bound states of the two-
body problem with exponentially decaying potential (15).

4.3 Three-body problem

Now, we consider the three-body problem with a heavy-light body ratiomh/ml =
20 that is studied in [21, 22, 35]. With such a mass ratio, κ in the unified problem
(6) is a matrix with entries κ = (41/84, 0; 0, 2/21). Our goal is to approximate the
eigenenergies and eigenstates obtained by using the classical BO approximation
in these papers. This preliminary numerical study demonstrates that the pro-
posed IGA method is a promising alternative to the classical BO approximation
method that a strong assumption is posed on the mass ratio.

To solve the three-body problem, we apply the highly accurate IGA method
with C6 septic B-spline elements. We set the domain as Ωε = [−20, 20] and ap-
ply a non-uniform grid with 80× 80 elements. Table 1 shows the eigenvalues of
the bound states of the three-body problem with the exponentially decaying po-
tential (15). The potential magnitude is β = 0.344595351. The IGA eigenvalues
are close to the ones (scaled) shown in Table 1 of [35]. Figure 7 shows the first
four bound state eigenfunctions. The eigenstate solution shapes match well with
the ones obtained using the BO approximation in Figure 4 of [21]. Moreover, we
observe a similar universality behaviour as in [21] and we will present a detailed
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study in future work. In conclusion, the IGA method with a small mesh grid
has the ability to approximate well both eigenenergies and eigenfunctions of the
bound states of the three-body problem.

method β j (Bosons) λhj j (Fermions) λhj

0 -0.2476034576 1 -0.1825896533
IGA 0.344595351 2 -0.1412793292 3 -0.1182591543

4 -0.1060931444 5 -0.1005294105

0 -0.247603458 1 -0.182589653
BO in [35] 0.34459535 2 -0.141279329 3 -0.118259157

4 -0.106093864 5 -0.102845702

Table 1. Eigenenergies of the three-body problem with a mass ratio 20 and an expo-
nentially decaying potential (15) when using IGA and BO approximation in [35].

Fig. 7. Eigenstate wavefunctions of the three-body problem with a mass ratio 20,
potential magnitude β = 0.344595351, and the exponentially decaying potential (15).
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5 Concluding remarks

In this paper, we initiated IGA of the quantum two- and three-body problems.
IGA is developed based on the classical Galerkin FEA that has the advantages
of a mature theoretical understanding of the error estimates, stabilities, and
robustness. IGA is successfully applied to solve the bound states of the two- and
three-body problems in 1D with arbitrary mass ratios and potential shapes.

As for future work, the first possible direction is a generalization to the two-
and three-body problems in multiple dimensions. Tensor-product structures may
be applied to reduce the computational costs [35]. Another direction of future
work is that one may use the recently developed softFEM [14] and dispersion-
minimized blending quadratures [13, 7] to solve the three-body problem with
higher accuracy and efficiency.
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