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Abstract. We focus on Isogeometric Analysis (IGA) approximations of
Partial Di�erential Equations (PDEs) solutions. We consider linear com-
binations of high-order and continuity base functions utilized by IGA.
Instead of using the Deep Neural Network (DNN), which is the con-
catenation of linear operators and activation functions, to approximate
the solutions of PDEs, we employ the linear combination of higher-order
and continuity base functions, as employed by IGA. In this paper, we
compare two methods. The �rst method trains di�erent DNN for each
coe�cient of the linear computations. The second method trains one
DNN for all coe�cients of the linear combination. We show on model
L-shape domain problem that training several small DNNs learning how
to span B-splines coe�cients is more e�cient.
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1 Introduction

Isogeometric Analysis (IGA) [1] employs smooth high-order and continuity base
functions for approximation of solutions of Partial Di�erential Equations (PDEs).
Physics Informed Neural Networks (PINN) [2] approximate the solution of a
given PDE with Deep Neural Network (DNN) being the concatenation of sev-
eral linear operators and non-linear activation functions. The Stochastic Gradi-
ent Descent (SGD) [3] is used to �nd the coe�cients of the DNN approximating
a given PDEs. In this presentation, we consider how smooth linear combinations
of higher-order and continuity base functions used by IGA can be employed by
DNNs and SGD method to approximate solutions of PDEs. In [4], we described
how IGA could be used to approximate the coe�cients of a linear combination
of B-splines, employed for the solution of a family of PDEs depending on the
right-hand side and boundary condition functions. In this presentation, we com-
pare two methods. The �rst method, following [4] is to set up and train di�erent
DNNs for di�erent coe�cients of linear combinations. The second method is to
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set up and train one DNNs for all coe�cients of linear combination. We consider
two problems. First, the simple family of one-dimensional problem

u′′(x) = f(x) = n2π2sin(nπx), u(0) = 0, u′(1) = g(n) = nπcos(nπ) (1)

for x ∈ (0, 1), used to explain our strategy. The family of solutions un(x) =
sin(nπx) depends on the parameter n de�ning the forcing and boundary condi-
tion. Second, we focus on model two-dimensional L-shape domain problem. The
DNNs proposed in this paper learn how to span the smooth IGA combinations
of B-splines approximating the solutions of PDEs.
Several Deep Neural Network approximating coe�cients of IGA base

functions. First, we assume that we approximate the solution of PDE by a
linear combination of B-splines u(x;n) ≈ un(x) =

∑
i ui(n)B

x
i,p. Following [4]

we approximate coe�cients of linear combinations by several DNNs, one ui(n) ≈
DNNi(n) for each i-th coe�cient

u(x;n) ≈ un(x) =
∑
i

ui(n)Bi,p(x) ≈
∑
i

DNNi(n)Bi,p(x) (2)

DNNi(n) = ciσ (ain+ bi) + di =
ci

1 + exp(−ain− bi)
+ di (3)

We de�ne the error function

errori(n) = 0.5 (DNNi(n)− ui(n))
2

(4)

with ui(n) computed using IGA method. The training procedure is employed
independently for each DNNi(n) approximating di�erent coe�cients of the lin-
ear combination as a function of forcing and boundary conditions depending on
n parameter. These DNNs learn an operator of di�erent forcing and boundary
conditions (parameterized by n) into coe�cients of B-spline base functions ap-
proximating solutions of PDE (depending on forcing and boundary conditions).
One Deep Neural Network approximating all coe�cients of IGA base

functions. The second method consists in approximating of coe�cients of linear
combinations by one DNN, namely DNN(n) = (u1, ..., uN ) computing all the
coe�cients

u(x;n) =
∑
i

ui(n)Bi,p(x) =
∑
i

(DNN(n))i Bi,p(x) (5)

DNN(n) = Cσ (An+B) +D =
C

1 + exp(An−B)
+D (6)

where A,B,C,D are vectors of size N × 1. We de�ne

error(x) =
(
∑

i (DNN(n))i − ui(n))
2

2
(7)

with ui(n) computed using IGA method. Here we have a single DNN learning an
operator from forcing and boundary conditions (parameterized by n) into coe�-
cients of B-spline basis functions approximating the solution of PDE (depending
on forcing and boundary conditions parameterized by n).
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Physics Informed Neural Network. Finally, we compare to PINN [2] ap-
proach, which approximates a single solution of (1) for a �xed n, with concate-
nation of linear operators and non-linear activation functions

PINN(x) = cσ (ax+ b) + d =
c

1 + exp(−ax− b)
+ d (8)

where σ(x) = 1
1+exp(−x) is e.g. the sigmoid activation function. We de�ne the

error functions for the approximation of PDE and b.c.

error1(x) = 0.5 (PINN ′′(x))
2
, error2 = 0.5 (PINN ′(1)− g(n))

2
,

error3 = 0.5 (PINN(0))
2
.

(9)

Here, DNN learns how to approximate a single solution of the PDE directly.

Fig. 1: Visualization of the �rst and the second DNN architectures.

Experimental veri�cation. We verify the methods on model 2D L-shape do-
main problem ∆u = 0 with zero Dirichlet b.c., and the Neumann b.c. ∂u

∂n =
g(x, y). We embed L-shape in a square and set 1/4 of the domain to 0. We assume
the exact solution of this PDE of the form uexact(x, y) = sin(2πn·x)·sin(2πn·y).
using the manufactured solution with g = ∂uexact

∂n . We discretize with B-spline
basis functions, seeking uh(x, y) =

∑
i=1,...,N ;j=1,...n uijB

x
i,pB

y
j,p. In our experi-

ment, we have 42 × 42 two-dimensional cubic B-splines of C2 continuity, with
N = 42 + 3 = 45, the total of 2025 coe�cients. In general the DNN is given by

l(0) = x, l(1) = σ(1)
(
W (1)l(0) + b(1)

)
, · · ·

· · · , l(n) = σ(n)
(
W (n)l(n−1) + b(n)

)
, l(out) = W (out)l(n) + b(out). (10)

We employ two methods, see Figure 1. The �rst uses one DNN for each coef-
�cient of the linear combination. Each DNN has input with n parameter, 600
neurons in the input layer, 600 neurons in two hidden layers, and 600 neurons
in the output layers, sigmoid activation function, and one output value of the
B-spline coe�cient. So we have 2025 DNNs approximating 2025 coe�cients of
B-splines. The second one uses one DNN to compute all the linear combination
coe�cients. This DNN has input with n parameter, 1000 neurons in the input
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layer, 1000 neurons in the hidden layer, and 1000 neurons in the output layer,
ReLU activation function, and N ×N output B-spline coe�cients (2025 output
values in our case). Figure 2 shows that training with 100 samples is cheaper and
more accurate if we train several small DNNs, learning how to span B-splines.
Conclusions. We show that DNN can be used to approximate coe�cients of
linear combinations of higher-order and continuity base functions employed by
IGA to approximate solutions of PDEs. The DNN learnt how to span the lin-
ear combinations of smooth B-splines. We obtained the approximation of the
solution of a family of PDEs that is of higher-order and continuity, smooth and
easily di�erentiate. In the future work we may employ the idea proposed by the
BSDE method [5], approximating the gradients of the solution of PDE.

Fig. 2: Several DNNs, one for each coe�cients work well as opposed to one DNN
for all coe�cients. Exact solution (blue). Left panel: Solution from one DNN for
all coe�cients (red), MSE=1.41e-4.Middle panel: Solution from several DNNs
one for each coe�cients. MSE=8.42e-7. Right panel: Training and testing with
100 samples of one DNN approximing a single B-spline coe�cient.
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