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Abstract. Inverse design that directly predicts multiple structural char-
acteristics of nanomaterials based on a set of desirable properties is
essential for translating computational predictions into laboratory ex-
periments, and eventually into products. This is challenging due to the
high-dimensionality of nanomaterials data which causes an imbalance in
the mapping problem, where too few properties are available to predict
too many features. In this paper we use multi-target machine learn-
ing to directly map the structural features and property labels, without
the need for exhaustive data sets or external optimization, and explore
the impact of more aggressive feature selection to manage the mapping
function. We �nd that systematically reducing the dimensionality of the
feature set improves the accuracy and generalizability of inverse models
when interpretable importance pro�les from the corresponding forward
predictions are used to prioritise inclusion. This allows for a balance
between accuracy and e�ciency to be established on a case-by-case ba-
sis, but raises new questions about the role of domain knowledge and
pragmatic preferences in feature prioritization strategies.
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1 Introduction

Chemical reactions are essential to maintaining sustainable production of fuels,
medicines and materials, and the majority of industrially important reactions
are facilitated by catalysts, which are additives that speed up chemical reactions
without being consumed in the process [1]. Catalysts enable a shorter reaction
time without a�ecting the yield, and considerable research has been directed
toward �nding the right catalyst for a given reaction and industrial objective.
Applications include energy generation [2�6] using metallic nanoparticles (typ-
ically 1-100 nm), which include single crystals, polycrystals and clusters in a
variety of sizes and shapes [7, 8]. Metallic nanoparticles have high surface-area-
to-volume ratio, enabling high catalytic activity to be achieved since more active
sites are available for reactant adsorption compared to larger catalysts, and of-
fer a large number of engineering degrees of freedom [9]. This presents both an
opportunity and a challenge.
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Nanoinformatics [10] has recently emerged as an complementary approach to
typical trial-and-error nanomaterials design, ideal for situations where the de-
sign space is large; employing both computational simulations and data-driven
methods such as machine learning in conjunction with standard experimental
and computational tools [11] to infer relationships between the structural char-
acteristics (features, that can be control) and the properties (target labels, that
are required) [12, 13]. Past studies have focused on forward prediction [14�17],
but an alternative approach is to use inverse predictions, that provide a `recipe'
for experimentalists to follow [18�20]. This is di�cult however, due to the highly
imbalanced mapping functions; we have many more structural features we need
to predict than properties we have to base them on.

Recently an entirely machine learning approach to inverse design has been
reported which directly maps multiple structural features to multiple property
labels, simultaneously, without the need for additional global searching or opti-
mization [21]. This method has considerable advantages over conventional inverse
design that requires exhaustive data sets, external optimization algorithms, and
can potentially predict multiple candidates with no means for discrimination. In
this method the mapping imbalance problem is alleviated by using a matching
forward model for features selection, but has so far only been demonstrated for
low-dimensional cases or where the mapping can be reduced to 1-to-1, which
is unlikely to be true for complex materials such as electrocatalysts. In this
study we explore the use of the optimization-free inverse design method for a
high-dimensional set of platinum nanoparticle catalysts and show that, while
restricting the models to features identi�ed using importance pro�les and recur-
sive feature elimination, a systematic improvement in model performance can
be achieved by balancing the mapping function, even if it is imbalanced in the
corresponding forward model.

2 Methods

2.1 Data set

The raw data used in this work are generated through molecular dynamics simu-
lations of the sintering and coarsening of platinum nanoparticles under di�erent
temperatures and atomic deposition rates, which exist in the form of three di-
mensional spatial coordinates [22], and can be obtained from Reference [23].
The entire data set contains 1300 instances, over a range of temperatures, sizes
(54 to 15837 atoms), growth rates and shapes. A complete list of the manu-
ally extracted features and labels is provided with the meta data in the online
repository [23]. The data set is labelled by the proportion of surface atoms with
particular ranges of coordination number, or surface coordination numbers as
an indicator of catalytic activity of face-centred cubic (fcc) metallic nanoparti-
cles for carbon monoxide oxidation reactions, oxygen reduction reactions, and
hydrogen oxidation and evolution reactions [24�26].
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2.2 Multi-target random forest regression

Previous works have demonstrated that random forest (RF) methods can be
used to �t high-dimensional target labels simultaneously with high accuracy [21].
Random forest is an ensemble technique based on decision trees with bootstrap
aggregation (bagging), that has been shown to perform well for predicting the
properties of metallic nanoparticle compared with other regressors [27]. A deci-
sion tree predicts the value of a label following decision rules inferred from the
features and bagging randomly sampled from the training set with replacement,
reducing the variance.

For each tree in the forest a bootstrap sample, i is selected from S, giving
S(i). A decision-tree is learnt such that instead of examining all possible feature-
splits at each node of the tree, a randomly subset of the features f ⊆ F is used,
where F is a set containing all features. Each node splits on the best feature in f ,
which is smaller than F , making it more e�cient, and allows for the accumulation
of importance pro�les based on how many times a decision is split on a given
feature. The pseudocode is illustrated in Alg. 1.

Algorithm 1 Random forest

Require: A training set S := (x1, y1), . . . ,(xn, yn), features F , and number of trees
in forest B.
function RandomForest(S, F )

H ← 0
for i ∈ 1, ..., B do

S(i) ← A bootstrap sample from S
hi ← RandomizedTreeLearn(S(i), F )
H ← H ∪ {hi}

end for

return H
end function

function RandomizedTreeLearn(S, F )
for Each node: do

f ← very small subset of F
Split on best feature in f

end for

return The learned tree
end function

Constructing a large number of decision trees with random feature selec-
tion grows into a random forest, in which the decision of the individual tree
is counted to output the mode of the classes for classi�cation or average pre-
diction for regression [28, 29]. Features are ranked during training based on
variance reduction during regression tasks, increasing the diversity and avoiding
over-�tting. Feature importance is calculated as the decrease in node impurity
weighted by the probability of reaching that node. The node probability can
be calculated by the number of samples that reach the node, divided by the
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total number of samples. The feature selection criterion for internal nodes is
the Gini impurity or information gain for classi�cation and variance reduction
for regression. This machine learning method can intrinsically handle multi-task
problems since the leaf nodes can refer to any collection of relevant labels. To
extend the traditional single-target ensemble predictor to solve multi-target RF
learning problems, users can simply substitute the typical univariate trees for
multivariate trees, where leaf nodes refer to multiple classes or target labels [30].

2.3 Work�ow

The work�ow for multi-target machine learning-based forward and inverse de-
sign requires data preprocessing (outlier removal and feature engineering) and
splitting the data for model training and validation. We used Tukey's method
[31] to detect outliers based on the quartiles of the data, and the results were
optimal when the threshold was set to 4, leaving 1114 instances. Constant fea-
tures and strongly correlated features (with > 95% correlation) were omitted
to avoid introducing bias during learning and each label was strati�ed to re-
duce the impact of imbalanced distributions, resulting in 37 features retained in
the feature space. All data are standardised and normalised (both features and
labels). Essential hyper-parameter optimization of all models was undertaken
here using a random grid search with 5-fold cross validation and evaluated us-
ing the mean squared error (MSE) and the mean absolute error (MAE). 10-fold
cross validation was used during training, and all models used strati�ed 25/75
test/train splits with the same random seed (both forward and inverse, during
optimization and training).

When applying this approach to inverse design, a preliminary multi-target
forward model is often necessary to reduce the number of features and focus
the inverse model on attributes that contribute to a strong relationship. Robust
feature selection in a forward ML work�ow is typically data-driven, such that
�nal feature set used to describe the raw data is selected by computational algo-
rithms [32]. This reduces model complexity, improves performance, and indicates
which features are likely to be most in�uential. When using RF regression, this
involves using the feature importance pro�le and recursive feature elimination
(RFE) to extract the subset of important features that are su�cient to simul-
taneously predict the target labels without signi�cant loss of performance. A
multi-target inverse model can be re-optimized and then re-trained to simulta-
neously predict the reduced (important) set of structural features (referred to as
�meta-labels�) using the set of labels (referred to as �meta-features�), as reported
elsewhere [21].

The entire work�ow is provided in Figure 1.

3 Discussion of Results

After data cleaning 37 features were retained to predict the 4 target labels.
This was done both separately (single target RF regression) and simultaneously
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Fig. 1. Work�ow for the inverse design methodology, based on multi-target regression
and feature selection using a forward model to reduce the mapping function. Repro-
duced with permission from Reference [21].

(multi-target RF regression) as summarised in Table 1, providing a baseline. The
results for each of the four single-target models (which provide the baselines) are
compared with the multi-target prediction in Table 1 and presented in the Fig-
ure 2. We can see from Figure 2 that there is no bias error (under-�tting) and
less than 0.5% variance error (over-�tting) when we use all of the 37 features
retained after cleaning, indicating the forward model can achieve high accuracy
and generalizability. The relative importance (magnitude) rapidly decays after
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(a)

(b) (c)

(d)

Fig. 2. Results for forward multi-target regression simultaneously predicting all four
target properties of the Pt catalysts trained on 37 features retained after data cleaning,
including (a) the feature importance pro�le rankings, (b) the learning curve trained
on the 37 retained features, (c) the recursive feature elimination selecting the top 24
features, and (d) the learning curve trained on the 24 most important features, showing
the accuracy and generalizability. Scores are the mean squared error.

the top three features in the feature importance pro�le. The forward features
selection using RFE indicates that the model may be reduced to the top 24 fea-
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Table 1. Forward predictions using the multi-target regression model of Pt catalyst
nanoparticles, with all of the features retained after data cleaning, the top 24 impor-
tant features identi�ed using recursive feature elimination to predict single property
individually, or all 4 properties simultaneously; and inverse predictions using the 24
most important features or the 16, 8 or 4 top features as ranked in the forward feature
importance pro�le. The results are evaluated using the mean absolute error (MAE)
and mean squared error (MSE).

Prediction Feature Set (Number) Target (Number) MAE MSE

Forward Retained (37) Surface_Defects (1) 0.0205 0.0016
Forward Retained (37) Surface_Microstructures (1) 0.0155 0.0007
Forward Retained (37) Surface_Facets (1) 0.0181 0.0007
Forward Retained (37) Formation_E (1) 0.0129 0.0003
Forward Retained (37) All Properties (4) 0.0211 0.0012
Forward Important (24) All Properties (4) 0.0208 0.0012
Inverse All Properties (4) Important (24) 0.0540 0.0085
Inverse All Properties (4) Top (16) 0.0499 0.0071
Inverse All Properties (4) Top (8) 0.0410 0.0048
Inverse All Properties (4) Top (4) 0.0284 0.0022

tures, which exhibits an increase in performance due to the signi�cant reduction
in model complexity and the removal of nuisance variables, as measured by the
MAE and MSE in Table 1. The training process for the �nal multi-target forward
model is visualised in Figure 2(d). Overall the multi-target model exhibited per-
formance comparable to the single-target models, and all models converge well
with almost no loss of accuracy or generalizability.

To develop the inverse model the RF regressor was re-optimized and re-
trained on the same data set, but the properties become �meta-features� and
the structural characteristics become �meta-labels�. The models are evaluated
using the same strategy, and the results are presented in Table 1. All training
processes are visualised using learning curves in Figure 3(a), and the comparison
of the predicted values of an instance from the testing set with its correspond-
ing ground truth in Figure 3(b), for the set containing the top 24 meta-labels.
The MAE for the inverse model is slightly more than double the MAE for the
forward model, due to the signi�cant imbalance between the number of meta-
features and meta-labels, but is still less than 6%. As we reduce the feature set
below the optimal list identi�ed using RFE in the forward model, a systematic
improvement in inverse model performance can be achieved by balancing the
mapping function, even if it is imbalanced in the corresponding forward model.
This is shown in the decrease in the MAE and MSE in Table 1 and in Figure
3(c,d) for 16 meta-labels, Figure 3(e,f) for 8 meta-labels, and Figure 3(g,h) for
4 meta-labels (representing a balanced function).

Conventional inverse design approaches are based on screening of a set of
(forward) structure/property relationships [33�38] to determine the structures
with the right properties, which eventually casts it as an optimization prob-
lem. Several approaches have been proposed [39, 40]. Tominaga et al. designed
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Results for inverse multi-target regression simultaneously predicting (a,b) 24
meta-labels (structural characteristics), (c,d) 16 meta-labels, (e,f) 8 meta-labels, and
(g,h) 4 meta-labels, for the Pt catalysts trained on all 4 target meta-features (nanopar-
ticle stability and catalytic property indicators). The learning curves are shown to the
left (a,c,f,g) and the 45 degree plot comparing the prediction for an instance in the
testing set with the ground truth to the right (b,d,f,h). Scores are the mean squared
error, and the colours in (b,d,f,h) are the features in the pro�le shown in Figure 2(a).
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a procedure that used genetic algorithms and Yang et al. developed IM2ODE
(Inverse design of Materials by Multi-Objective Di�erential Evolution) based on
multi-objective di�erential evolution, both capable of global searching of large
databases. Zunger et al. also identi�ed materials with speci�c functionalities us-
ing an inverse design framework based on a global searching task combined with
high-throughput density functional theory [41�43]. These approaches su�er from
introducing more overhead (beyond the model training), more uncertainty (as
optimization is imperfect), and can only identify candidate materials that are
already in the set. They also become computationally intensive and impractical
in nanomaterials design, where the design space is larger, and the probability
of predicting implausible con�gurations increases [44]. By eliminating the need
for the optimization step the work�ow is accelerated, with the added advance of
increasing speci�city and relaxing the need for big data.

Given a pro�le of desired properties for a catalyst, the well-trained inverse
models can output the most appropriate values of each structural feature for a
given set of industrial requirements; property indicators for the oxygen reduc-
tion reaction could be suppressed in favour of indicators for hydrogen evolution
reactions, for example, or a particle could be designed that can be simultane-
ously be used for both reactions. A combination of structural feature could be
predicted for the speci�ed properties without requiring additional optimization
or global searching. A question that arises, however, is how �exible the feature
(meta-label) selection process can be? Some of the top 24, 16, 8 or even top 4
features cannot be directly controlled in the lab. Including domain knowledge
and selecting features based on practical considerations could accelerate transla-
tions of predictions in to the lab, and eventually the factory, but would represent
a departure from an entirely data-driven, evidence based approach. The impact
of combining, or prioritising, user preference over data-driven feature selection is
the topic of future work, to explore how tolerant inverse models (such as these)
will be to human intervention and whether inverse models can be tailored to
experimental or industrial needs.

4 Conclusions

In the present study we have demonstrated the use of forward and inverse design
models to predict the structure/property and property/structure relationship of
Pt nanoparticle catalysts, respectively. These models included performance in-
dicators relevant to the nanoparticle stability, carbon monoxide oxidation reac-
tions, oxygen reduction reactions, and hydrogen oxidation and evolution reac-
tions. We have used interpretable multi-target random forest regression to pre-
dict multiple property indicators and structural characteristics simultaneously,
which better accounts for the fact that material properties can be correlated and
that certain structural features can drive more than one type of reaction. The
models generally show low errors, less than 2%, with no bias error and minimal
variance error. The absolute prediction error for the inverse model is more than
twice the error in the corresponding forward model, likely due (at least in part)
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to the signi�cant imbalance in the mapping function; predicting 24 meta-labels
with only 4 meta-features.

To improve the performance of the inverse model, we explored the impact of
arti�cially reducing the set of meta-labels to better balance the mapping func-
tion, while retaining the most important features in the forward model at each
stage. We �nd that systematically reducing the number of meta-labels lowers
the model error, and when the number of meta-features and meta-labels are
balanced a similar performance to the forward model can be achieved. Reducing
the meta-labels balance also simpli�es the inverse model and can o�er some ad-
vantages when using it in practice. This raises questions as to whether human
intervention in the feature selection process to accommodate practical consid-
eration, will be detrimental to performance once a fully data-driven approach
is abandoned. This is an interesting topic of ongoing work and will be reported
elsewhere.

Acknowledgements Computational resources for this project were supplied
by the National Computing Infrastructure national facility under grant p00.

References

1. Laidler, K.J.: A glossary of terms used in chemical kinetics, including reaction
dynamics (IUPAC Recommendations 1996). Pure and Applied Chemistry 68(1),
149�192 (1996).

2. Shokrlu, Y.H., Babadagli, T.: Viscosity reduction of heavy oil/bitumen using
micro- and nano-metal particles during aqueous and non-aqueous thermal appli-
cations. Journal of Petroleum Science and Engineering 119, 210�220 (2014).

3. González-Gil, R., Herrera, C., Larrubia, M.A., Mariño, F., Laborde, M., Ale-
many, L.J.: Hydrogen production by ethanol steam reforming over multimetal-
lic RhCeNi/Al2O3 structured catalyst. Pilot-scale study. International Journal of
Hydrogen Energy 41(38), 16786�16796 (2016).

4. Guo, W., Vlachos, D.G.: Patched bimetallic surfaces are active catalysts for am-
monia decomposition. Nature Communications 6(1), 8619 (2015).

5. Wu, Z.P., Caracciolo, D.T., Yazan, M., Jianguo, W., Zhijie, K., Shiyao, S., Var-
gas, J.A., Yan, S., Hopkins, E., Keonwoo, P., Sharma, A., Yang, R., Valeri, P.,
Wang, L., Chuan-Jian, Z.: Alloying�realloying enabled high durability for Pt�Pd-
3d-transition metal nanoparticle fuel cell catalysts. Nature Communications 12(1)
(2021).

6. Sheng, W., Bivens, A.P., Myint, M., Zhuang, Z., Forest, R.V., Fang, Q., Chen,
J.G., Yan, Y.: Non-precious metal electrocatalysts with high activity for hydrogen
oxidation reaction in alkaline electrolytes. Energy & Environmental Science 7(5),
1719�1724 (2014).

7. Wu, Z., Yang, S., Wu, W.: Shape control of inorganic nanoparticles from solution.
Nanoscale 8(3), 1237�1259 (2016).

8. Baig, N., Kammakakam, I., Falath, W.: Nanomaterials: a review of synthesis meth-
ods, properties, recent progress, and challenges. Materials Advances 2(6), 1821�
1871 (2021).

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_39

https://dx.doi.org/10.1007/978-3-031-08754-7_39


Inverse Design of Electrocatalysts using Multi-Target Machine Learning 11

9. Rodrigues, T.S., da Silva, A.G.M., Camargo, P.H.C.: Nanocatalysis by noble metal
nanoparticles: controlled synthesis for the optimization and understanding of ac-
tivities. Journal of Materials Chemistry A 7(11), 5857�5874 (2019).

10. Barnard, A.S., Motevalli, B., Parker, A.J., Fischer, J.M., Feigl, C.A., Opletal, G.:
Nanoinformatics, and the big challenges for the science of small things. Nanoscale
11(41), 19190�19201 (2019).

11. Rajan, K.: Materials informatics. Materials Today 8(10), 38�45 (2005).
12. Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: A review

of classi�cation techniques. Emerging arti�cial intelligence applications in com-
puter engineering 160(1), 3�24 (2007).

13. Sammut, C., Webb, G.I. (eds.): Supervised Learning, p. 941. Springer US, Boston,
MA (2010).

14. Parker, A.J., Opletal, G., Barnard, A.S.: Classi�cation of platinum nanoparticle
catalysts using machine learning. Journal of Applied Physics 128(1), 1�11 (2020).

15. Sun, B., Fernandez, M., Barnard, A.S.: Machine Learning for Silver Nanoparti-
cle Electron Transfer Property Prediction. Journal of chemical information and
modeling 57(10), 2413�2423 (2017).

16. Janet, J.P., Kulik, H.J.: Predicting electronic structure properties of transition
metal complexes with neural networks. Chemical Science 8(7), 5137�5152 (2017).

17. Takigawa, I., Shimizu, K.i., Tsuda, K., Takakusagi, S.: Machine-learning prediction
of the d-band center for metals and bimetals. RSC Advances 6(58), 52587�52595
(2016).

18. Christiansen, R.E., Michon, J., Benzaouia, M., Sigmund, O., Johnson, S.G.: In-
verse design of nanoparticles for enhanced Raman scattering. Optics Express 28(4),
4444�4462 (2020).

19. Lee, J.W., Park, W.B., Do Lee, B., Kim, S., Goo, N.H., Sohn, K.S.: Dirty engi-
neering data-driven inverse prediction machine learning model. Scienti�c Reports
10(1), 20443 (2020).

20. Hassan, S.A.: Arti�cial neural networks for the inverse design of nanoparticles with
preferential nano-bio behaviors. The Journal of Chemical Physics 153(5), 54102
(2020).

21. Li, S., Barnard, A.S.: Inverse design of nanoparticles using multi-target machine
learning. Advanced Theory and Simulation, 5(2), 2100414 (2022).

22. Barron, H., Opletal, G., Tilley, R.D., Barnard, A.S.: Dynamic evolution of speci�c
catalytic sites on Pt nanoparticles. Catalysis Science and Technology 6(1), 144�151
(2016).

23. Barnard, A., Opletal, G.: Platinum nanoparticle data set, v1. CSIRO Data Collec-
tion (2019), https://doi.org/10.25919/5d3958d9bf5f7

24. Zhao, Z., Chen, Z., Zhang, X., Lu, G.: Generalized Surface Coordination Number as
an Activity Descriptor for CO2 Reduction on Cu Surfaces. The Journal of Physical
Chemistry C 120(49), 28125�28130 (2016).

25. Sun, B., Barron, H., Wells, B., Opletal, G., Barnard, A.S.: Correlating anisotropy
and disorder with the surface structure of platinum nanoparticles. Nanoscale
10(43), 20393�20404 (2018).

26. Parker, A.J., Barnard, A.S.: Machine learning reveals multiple classes of diamond
nanoparticles. Nanoscale Horizons 5(10), 1394�1399 (2020).

27. Barnard, A.S., Opletal, G.: Selecting machine learning models for metallic nanopar-
ticles. Nano Futures 4(3), 035003 (2020).

28. Breiman, L.: Random forests. Machine Learning 45(1), 5�32 (2001).
29. Breiman, L.: Bagging predictors. Machine Learning 24, 123�140 (1996).

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_39

https://dx.doi.org/10.1007/978-3-031-08754-7_39


12 S. Li et al.

30. Kami«ski, B., Jakubczyk, M., Szufel, P.: A framework for sensitivity analysis of
decision trees. Central European Journal of Operations Research 26(1), 135�159
(2018).

31. Hoaglin, D.C., Iglewicz, B., Tukey, J.W.: Performance of some resistant rules for
outlier labeling. Journal of the American Statistical Association 81(396), 991�999
(1986).

32. Liu, T., Barnard, A.S.: Fast derivation of shapley based feature importances
through feature extraction methods for nanoinformatics. Machine Learning: Sci-
ence and Technology 2(3), 035034 (2021).

33. Zunger, A.: Inverse design in search of materials with target functionalities. Nature
Reviews Chemistry 2, 0121 (2018).

34. Sanchez-Lengeling, B., Aspuru-Guzik, A.: Inverse molecular design using machine
learning: Generative models for matter engineering. Science 361, 360 (2018).

35. Jørgensen, P. B., Schmidt, M. N., Winther O.: Deep generative models for molec-
ular science. Molecular Informatics 37, 1700133 (2018).

36. Hanakata, P. Z., Cubuk, E. D.,. Campbell, D. K, Park, H. S.: Accelerated search
and design of stretchable graphene kirigami using machine learning. Physical Re-
view Letters 121, 255304 (2018).

37. Wan, J., Jiang, J.-W., Park, H. S.: Thermal conductivity versus the density of
holes for porous graphene at room temperature. Carbon 157, 262 (2020).

38. Ma, C., Zhang, Z., Luce, B., Pusateri, S., Xie, B., Ra�ei, M., Hu, N.: Accelerated de-
sign and characterization of non-uniform cellular materials via a machine-learning
based framework. npj Computational Materials 6, 40 (2020).

39. Tominaga, D., Koga, N., Okamoto M.: in, Proceedings of the 2nd Annual Confer-
ence on Genetic and Evolutionary Computation, ACMPress, New York pp. 251�258
(2000)

40. Zhang ,Y.-Y., Gao, W., Chen, Xiang, S., H., Gong, X.-G.: Inverse design of ma-
terials by multi-objective di�erential evolution. Computational Materials Science
98, 51 (2015).

41. Dudiy, S., Zunger, A.: Searching for alloy con�gurations with target physical prop-
erties: Impurity design via a genetic algorithm inverse band structure approach.
Physical Review Letters 97, 046401 (2006).

42. Yu, L., Kokenyesi, R. S., Keszler, D. A., Zunger, A.: Inverse design of high absorp-
tion thin-�lm photovoltaic materials. Advanced Energy Materials 3, 43 (2013).

43. Yang, D., Lv, J., Zhao, X., Xu, Q., Fu, Y., Zhan, Y., Zunger, A., Zhang, L.:
Functionality-directed screening of Pb-free hybrid organic-inorganic perovskites
with desired ontrinsic photovoltaic functionalities. Chem. Mater. 29, 524 (2017).

44. Zunger, A.: Beware of plausible predictions of fantasy materials. Nature 566, 447
(2019).

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_39

https://dx.doi.org/10.1007/978-3-031-08754-7_39

