
Developing an ELM Ecosystem Dynamics Model
on GPU with OpenACC ?

Peter Schwartz1[0000−0002−0852−5528], Dali Wang1[0000−0001−6806−5108],
Fengming Yuan1[0000−0003−0910−5231], and Peter Thornton1[0000−0002−4759−5158]

Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge TN
37830, USA

{schwartzpd,wangd,yuanf,thorntonpe}@ornl.gov

Abstract. Porting a complex scientific code, such as the E3SM land
model (ELM), onto a new computing architecture is challenging. The
paper presents design strategies and technical approaches to develop an
ELM ecosystem dynamics model with compiler directives (OpenACC) on
NVIDIA GPUs. The code has been refactored with advanced OpenACC
features (such as deepcopy and routine directives) to reduce memory
consumption and to increase the levels of parallelism through parallel
loop reconstruction and new data structures. As a result, the optimized
parallel implementation achieved more than a 140-time speedup (50 ms
vs 7600 ms), compared to a naive implementation that uses OpenACC
routine directive and parallelizes the code across existing loops on a
single NVIDIA V100. On a fully loaded computing node with 44 CPUs
and 6 GPUs, the code achieved over a 3.0-times speedup, compared to
the original code on the CPU. Furthermore, the memory footprint of the
optimized parallel implementation is 300 MB, which is around 15% of
the 2.15 GB of memory consumed by a naive implementation. This study
is the first effort to develop the ELM component on GPUs efficiently to
support ultra-high-resolution land simulations at continental scales.

Keywords: Earth System Models · Exascale Energy Earth System Model
· E3SM Land Model · OpenACC · Functional Unit Testing · Ecosystem
Dynamics

1 Introduction

The Exascale Energy Earth System Model (E3SM) is a fully coupled Earth sys-
tem model that uses code optimized for the Department of Energy (DOE)’s
advanced computers to address the most critical scientific questions facing the

? This research was supported as part of the Energy Exascale Earth System Model
(E3SM) project, funded by the U.S. Department of Energy, Ofce of Science, Ofce
of Biological and Environmental Research. This research used resources of the Oak
Ridge Leadership Computing Facility and Experimental Computing Laboratory at
the Oak Ridge National Laboratory, which are supported by the Ofce of Science of
the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_38

https://dx.doi.org/10.1007/978-3-031-08754-7_38


2 P. Schwartz et al.

US and the society [4]. The E3SM contains several community models to sim-
ulate major Earth system components: atmosphere, ocean, land, sea ice, and
glaciers. Within the E3SM framework, the E3SM Land Model (ELM) is de-
signed to simulate how the changes in terrestrial land surfaces interact with other
Earth system components and has been used to understand hydrologic cycles,
biogeophysics, and ecosystem dynamics[3]. The ELM software has several distin-
guishing computational features: 1) all the biophysical and biochemical processes
are simulated on individual land surface units (i.e., gridcell) independently; 2)
highly customized globally accessible, hierarchical data structures are used to
represent the heterogeneity of Earth’s landscape; 3) none of the subroutines are
computationally intensive[10].

Most current high-end supercomputers use heterogeneous hardware with ac-
celerators[2]. The E3SM, consisting of millions of lines of code developed for tra-
ditional homogeneous multicore processors, cannot automatically benefit from
the advancement of these supercomputers. Refactoring and optimizing the E3SM
models for new architectures with accelerators is challenging but inevitable.

Rewriting a large-scale legacy code in a new programming language (such as
CUDA) is not practical, two general approaches (compiler directives and the use
of GPU-ready libraries) have been adapted to develop E3SM code for computing
systems with accelerators. For example, the Kokkos libraries have been used to
increase the performance on the E3SM atmosphere model on NVIDIA GPUs in
the Summit supercomputer[1] with a performance similar to that of the CPU
code. The OpenACC and Athread have been used to develop the community
atmosphere model and parallel ocean program on many-core 64-bit RISC pro-
cessors in the Taihu Light supercomputer[9] with performance improvements of
up-to 8 times. However, the performance improvement in this effort mainly came
from the extensive programming using Athread. The OpenACC is mainly used
as a pre-preparation for code porting onto the RISC system. The OpenACC has
been used to accelerate the Model for Prediction Across Scales (MPAS) micro-
physics WSM6 (WRF Single Motion) model on a single NVIDIA GPU[5] with
a performance improvement of up to 2.4 times.

With the availability of high-resolution atmospheric forcing (such as tem-
perature, precipitation, shortwave radiation, and vapor pressure) [6] and land
surface proprieties (such as vegetation and soil properties maps), it is desirable
to conduct high-fidelity land simulations with ELM at 1km-resolution to de-
liver a “gold standard” set of results describing the surface weather and climate,
as well as the energy, water, carbon, and biogeochemistry processes at a con-
tinental scale. The ultra-high-resolution ELM simulation over North America
covers a landscape of 24 million gridcells, 350 million columns, and 700 million
vegetation patches, is only feasible with highly efficient use of the accelerators
within high-end supercomputers. Furthermore, for the reason that there are over
one thousand subroutines in ELM, the majority of which are computationally
non-intensive, using compiler directives is the appropriate approach to acceler-
ate ELM onto GPU systems. The paper reports development of an ecosystem
dynamics model within ELM on NVIDIA GPU using OpenACC.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_38

https://dx.doi.org/10.1007/978-3-031-08754-7_38


Developing an ELM Ecosystem Dynamics Model on GPU with OpenACC 3

1.1 Computational platform and software environment

The computational platform used in the study is the Summit leadership comput-
ing system at the Oak Ridge National Laboratory. Summit has 4,608 computing
nodes, most of which contain two 22-core IBM POWER9 CPUs, six 16-GB
NVIDIA Volta GPUs, and 512 GB of shared memory. Technically, this study
uses 42 CPU cores (2 CPU cores are reserved for system functions) and all the
non-tensor cores in GPUs. The software environment used in our study include
NVIDIA HPC 20.11 and several libraries: OpenMPI (spectrum-mpi/10.4.0.3-
20210112), NetCDF (netcdf-c/4.8.0, netcdf-fortran/4.4.5), pnetcdf(1.12.2), HDF
(1.10.7), and CUDA (11.1).

2 Method

The ecosystem dynamics model simulates the biogeochemical cycles of the ecosys-
tem, including carbon, nitrogen, and phosphorus. It contains many function
groups, such as nitrogen deposition/fixation, maintenance and growth respira-
tion, phosphorus deposition, and soil litter decomposition. The ecosystem dy-
namics model is the most sophisticated model within ELM that contains over 90
subroutines and accesses over 2000 globally accessible variables, many of them
3D arrays. All the ELM routines can access these hierarchical global data struc-
tures during the simulation.

We have developed a Functional Unit Testing (FUT) framework to generate
standalone ELM models to accelerate code porting and performance tuning. The
FUT is a python toolkit built upon the previous software system designed to
facilitate scientific software testing[8, 7]. We first generate a standalone ecosys-
tem dynamics model for code porting and performance evaluation. To quickly
assess the performance of ELM, we also create synthesized data using the obser-
vational data from AmeriFlux (ameriflux.lbl.gov) as the forcing data set for the
code development. The forcing data and the global variables for 6000 gridcells
take 11GB GPU memory (approximate 1.8MB data per gridcell). Each NVIDIA
V100 contains 16 GB of memory, so 5GB of shared GPU memory is available
for other globally accessible variables, history data, external forcing data, and
ELM kernels. The ecosystem dynamics model takes an hourly timestep. An ELM
spin-up simulation 1 generally covers a period of 800 to 1000 years, and an ELM
transit simulation 2 runs over a period of 100-200 years. Therefore, the ecosystem
dynamics model usually is executed around 8-10 million times on each gridcell.

1 The spin-up simulation is used for the ELM to reach a state of statistical equilibrium
under the applied climatic forcing.

2 The transit simulation is referred to the ELM simulation of post industry revolution
period (1850-present) with rising CO2, greenhouse emission, dynamical vegetation,
and land use and land change, including urbanization.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_38

https://dx.doi.org/10.1007/978-3-031-08754-7_38


4 P. Schwartz et al.

2.1 ELM data structure and ecosystem dynamics model

The ELM uses highly customized, hierarchical data structures (Fig.Z 1) to repre-
sent the heterogeneity of Earths landscape. Due to historical reasons, these data
structures are declared as globally accessible entities that can be referenced and
modified by individual ELM functions during the simulation. Specifically, ELM
contains 5 landscape datatypes (gridcell, topographic unit, land cover, soil col-
umn, and vegetation patch) representing several aspects of the land surface.
Each gridcell represents a small region on the Earth’s surface, and is a cus-
tomized datatype that is derived from a standalone geospatially explicit data
library and has dozens of global variables. Each gridcell contains 9 landcover
units, 11 column units (each soil column can have up to 20 soil layers and 5
bedrock layers), and 24 vegetation units. Furthermore, The ELM has another
25+ customized model-related datatypes (such as the state and flux datatype
for carbon, nitrogen, temperature, and soil). Altogether, these derived datatypes
(around 90) contain over 2000 global variables, many of which are multidimen-
sional arrays.

Fig. 1: Highly customized, hierarchical ELM data structure

The ecosystem dynamics model is the most complex submodel within ELM,
containing four major subroutine groups (initialization, leaching, noleaching1,
and noleaching2). In total, these subroutine groups contain over 90 subroutines
and access around 2000 global variables. From the function perspective, the
ecosystem dynamics model can be grouped into several modules, such as carbon,
nitrogen, and phosphorus dynamics, phenology, soil litter, gap mortality, and
fire (Fig. 2). For a better illustration, many secondary and supporting functions
(such as IO, timing, and other utility functions) are not shown in the picture.

2.2 Performance comparison and a naive OpenACC implementation

This study adopts a node-level performance comparison. A similar full workload
is placed onto all the CPUs or GPUs within a single node. The execution times

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_38

https://dx.doi.org/10.1007/978-3-031-08754-7_38


Developing an ELM Ecosystem Dynamics Model on GPU with OpenACC 5

Init/Leaching/noLeaching1&2

Soil Litter
Phenology

CN Decomposition

ELM driver

Carbon/Nitrogen/Phosphorus dynamics

Fire

Gap Mortality

Others

Fig. 2: The ecosystem dynamics model contains several function modules. There are
129 nodes, each represents a subroutine. The four blue node represent the entrance to
subroutine groups: initialization, leaching, noleaching phase 1, noleaching phase 2.

of the original CPU code and GPU implementation at a single hourly simulation
timestep are collected for performance evaluation. Specifically, on a single Sum-
mit node, we assign 36000 gridcells on GPUs (6000 gridcells on each GPU) and
36036 gridcells on CPUs (858 gridcells on each CPU core). With the workload
of 858 gridcell, the original CPU-based ecosystem dynamics model takes 150
milliseconds (ms) to finish a single timestep (hourly) simulation. Note that the
node-level comparison with a similar workload has also been adopted by other
scientific code porting [1, 5].

The original code organizes gridcells into clumps on each CPU core, and the
ecosystem dynamics model runs over these clumps of gridcells. Therefore one of
the most straightforward implementations is to instrument OpenACC directives
into the original code and onto these existing loops. Specifically, this implemen-
tation contains four major steps: 1) use the OpenACC data directive to create a
data region and copy all the input data into the data region once at the begin-
ning of simulation; 2) use the routine directives to generate GPU kernels of the
majority of ecosystem dynamics subroutines, including three subroutine groups,
Leaching, NoLeaching Phase 1, and NoLeaching Phase 2, and many subroutines
inside them; 3) place parallel loop constructs to loop over the gridcells, then
4) launch these GPU subroutine kernels in parallel (Fig. 3). This naive imple-
mentation does work but comes with abysmal performance (over 7 seconds) and
consumes a large amount of memory (2.15 GB) for just the kernel.

2.3 Code Optimization

Several optimizations were developed to improve the code performance, such
as reducing the memory consumption, restructuring parallel loops, deploying
reduction clauses, and increasing parallelism over independent elements.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_38

https://dx.doi.org/10.1007/978-3-031-08754-7_38


6 P. Schwartz et al.

Algorithm 1 A Naive Implementation

if first step then
acc enter data copyin . Start Unstructured Data Region

acc parallel loop default(present)
for each gridcell do

get bounds of gridcell . Bounds holds subgrid info
Leaching
NoLeaching Phase 1
NoLeaching Phase 2

Fig. 3: All subroutines were ported using acc routine directive and parallelized across
the existing gridcell loop.

Reducing the memory allocation of local variables Each NVIDIA V100
has 16 GB of memory to contain all the data and ELM kernels. Memory alloca-
tion operations on GPU are more expensive than those on the host, so we need
to reduce the memory consumption of each kernel. In this study, we deployed
many methods to reduce the size of these local variables, such as converting
arrays into scalars and compressing the sparse arrays into dense arrays. For ex-
ample: In SoilLittVertTransp, 9 local arrays would be allocated with a size of
238 doubles for each gridcell (that is 17136 (9*238*8) bytes in total). After refac-
torization, these arrays were replaced with a couple of 64-bit scalar and 4 dense
arrays (less than 550 bytes in total). The memory reduction decreases the total
execution time of the ecosystem dynamics model to 150ms from 7600ms. This
memory saving is also necessary since we want to put up to 6000 gridcells on a
single GPU.

Restructure parallel loops The routine directive provides the ability to test
functions on the GPU quickly, but for subroutines with internal loop structures
and nested function calls, performance degradation is expected. In the ecosystem
dynamics model, routines that loop over the same subgrid element (Column or
Patch) tend to be clustered together. For example, Fig. 4 shows a group of
functions labeled as SetValues, where the ELM subroutines compute over the
Patch and Column arrays, respectively (Algorithm 2). A reliable optimization
strategy is to refactor these routines to remove their internal loops and change
the external gridcell based loops to the relevant subgrid element, which allows
them to be grouped under different parallel loop constructs (Algorithm 3). In this
case, each subroutine is actually completely independent of the others so that
the SetValues group of functions can utilize asynchronous kernel launch. The
loop re-factorization decreases the execution time from 30 ms (CPU code) to 16
ms (GPU code) and proves that the routine directive can provide a significant
speedup over the CPU implementation.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_38

https://dx.doi.org/10.1007/978-3-031-08754-7_38


Developing an ELM Ecosystem Dynamics Model on GPU with OpenACC 7

Algorithm 2 Parallelize Gridcell

acc parallel loop
for each Gridcell do

vegcfSetValues(array)
vegnfSetValues(array)
vegpfSetValues(array)

Algorithm 3 Parallelize Patch

acc parallel loop async
for each Patch do

vegcfSetValues(Patch index)

acc parallel loop async
for each Patch do

vegnfSetValues(Patch index)

acc parallel loop async
for each Patch do

vegpfSetValues(Patch index)

Fig. 4: The SetValues routines were refactored to remove the internal loops. In the
original code (Algorithm 2), the SetValues routines take global Patch arrays as ar-
guments and calculations are performed on the elements of these arrays. After the
refactorization, the outer loop is over Patches with only the Patch index passed as an
argument, and the multiple kernels can be launched asynchronously. (Algorithm 3).

Accelerate Internal Loops For subroutines that must have their internal
loops, we forego the routine directive and deploy different parallel techniques
specific to each loop. One good example is the fire module that includes two
large subroutines (FireFluxes and FireArea), each also contains many internal
loops. When deploying the OpenACC routine directive within the fire module,
a single step execution on GPU takes around 50 ms. After the internal loop
acceleration, the execution time becomes 4.84 ms (Table 1).

Algorithm 4 CPU Code

for each active Patch do
for each SoilLayer do

Get: Column from Patch
Sum: Patch vars to Column

Algorithm 5 GPU Code

acc parallel loop collapse gang worker
for each SoilLayer do

for each active Column do
Init: sums
acc vector reduction(+:sums)
for each Patch in Column do

if Patch is active then
Reduce: Patch vars to Column

Fig. 5: CPU Code(left) only uses two loops, the GPU code(right) required an addi-
tional loop to prevent race conditions during reduction ,but this requires looping over
all Patches rather than only the active Patches. Despite the increase in loop size, the
achieved speedup is over 2x for the entire FireMod section (Table 1)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_38

https://dx.doi.org/10.1007/978-3-031-08754-7_38


8 P. Schwartz et al.

The ecosystem dynamics model uses hierarchical data structures, and the lower-
level variables (i.e. Patch variables) are aggregated into the corresponding higher-
level variables (i.e. Column variables). Fig. 5 shows an example of aggregating
variables from Patch to Column in the FireFluxes subroutine. The code is op-
timized by using gangs and workers to parallelize the Soil Layer and Column
(collapsed) loops with an inner vector loop performing the reduction. The re-
duction operation is very efficient in our case because there are a maximum of
33 patches in each column and each warp of the NVIDIA V100 has 32 threads.
With the reduction, we can finish the operations in 0.3 ms. After the optimiza-
tions, the execution time of the entire GPU-based fire module is reduced to 4
ms, which includes 20 kernels in total.

Parallelize Over Nutrients or Output Variables To further improve the
performance of the ecosystem dynamics model, we investigate the task paral-
lelism of algorithms that don’t distinguish among nutrients, such as carbon,
nitrogen, and phosphorus (CNP), aside from the input and output variables
(i.e. sources and sinks of CNP). A good example are the transport calculations
inside the SoilLittVertTransp subroutine (Fig. 6), where we take advantage of
asynchronous compute to pipeline the creation of local arrays for tridiagonal
coefficients. A new array of derived types is created with each element pointing
to a set of 3D arrays corresponding to a CNP nutrient input or output variable.
This data structure is initialized and moved to the GPU only at the start of
a run via deepcopy [?]. We can then either collapse the nutrient loop into the
parallel loop construct or use the nutrient loop to asynchronously launch kernels
to improve the code performance.

Algorithm 6 Init Pointer List

Loop over ntypes (C, N, P)
for each ntype do

list[ntype]%conc→ ntype%conc
list[ntype]%src→ ntype%src
list[ntype]%trcr → ntype%trcr

acc copyin(list)

Algorithm 7 Parallelize Over ntypes

for each ntype do
acc parallel loop async(ntype)
for each decomp source do

for each soil levels do
for each soil column do

Set outputs using list
Solve Transport

Fig. 6: (Left) An array of a derived type is created whose fields point to an output
field of a CNP global variable and copied to device at start of run. (Right) The CPU
nutrient type loop launches the transport kernels asynchronously so that independence
of CNP provides a fourth level of parallelism to occupy the GPU.

The left panel of Fig. 6 illustrates the creation of the new derived type, and
the right panel shows the new asynchronous loop structure of the transport algo-

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_38

https://dx.doi.org/10.1007/978-3-031-08754-7_38


Developing an ELM Ecosystem Dynamics Model on GPU with OpenACC 9

rithm inside the SoilLittVertTransp module. The vertical transport among soil
levels in each soil column is calculated using a tridiagonal solver. The solving
algorithm does not have enough dimensions (vertical soil layers) to fully utilize
the GPU resources, so we take advantage of the independence between CNP
inputs and outputs to occupy the device. The asynchronous launching of these
kernels allows the whole SoilLittVertTransp module to finish in 5 ms, compared
to over 40 ms using the routine directive after removing excess memory alloca-
tions. This method of using arrays of pointers is also used to reorganize the code
structure of other models within ELM, so we can use OpenACC directive to
explore the parallelism of these models efficiently. A good example is the ELM
output model that generates a history buffer containing over 500 aggregated and
averaged variables to be discussed in the future work on the full ELM simulation.

3 Results

3.1 Overall Performance Improvement

We gather the subroutines in the ecosystem dynamics model into many groups
and collect the individual execution time sequentially (Table 1). The GPU-based
ecosystem dynamics model achieves a 3.0 times speedup over the original code on
the CPU when the Summit node is fully loaded. The timing data of the majority
(10 out of 15) function groups show good speedups (ranging from 2.3 to 8.3
times). Especially, gap mortality (GapMortality) contains many global-variable
operations (similar to SetValues) that have been refactored into parallel do loop
and are launched asynchronously on GPU. Respiration contains two simple loops
that have been refactored into parallel do loops with a reduction clause. The
execution times of the other 5 groups are relatively short (less than 2 ms). The
slow down of these groups is mainly because the overhead associated with GPU
kernels overshadowed the small computational part of these subroutines. After
optimization, the entire ecosystem dynamics model (GPU kernels with all the
nested subroutines) requires around 300MB of memory.

3.2 Profiling Details

To determine the limitations of OpenACC’s routine directive and better un-
derstand performance improvements, we used NVIDIA’s Nsight Compute 3 and
Nsight Systems 4 to collect GPU metrics and traces for SoilLittVertTransp, Fire-
Mod, and SetValues subroutines at various stages of optimization. Table 2 shows
the metrics of the kernels that illustrate different shortcomings of prior versions
of the GPU kernels. Several metrics, such as wallclock time, kernel launch

3 An NVIDIA interactive kernel profiler, https://developer.nvidia.com/nsight-
compute

4 An NVIDIA performance analysis tool, https://developer.nvidia.com/nsight-
systems

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_38

https://dx.doi.org/10.1007/978-3-031-08754-7_38


10 P. Schwartz et al.

Table 1: Comparison of average execution time between GPU and CPU versions of
the ecosystem dynamics model (single timestep) on a fully loaded single Summit node.
Each node has the the same size grid divided between 6 GPUs or 42 CPUs

Function Group GPU(ms) CPU(ms) Speedup

SetValues 15.49 46.16 2.98
NDeposition/Fixation 0.09 0.02 0.24
Respiration/PDeposition 0.33 2.77 8.30
Decomp. Rate 1.31 3.08 2.35
Vertical Decomp. 2.74 7.77 2.84
Alloc Phase 1 1.51 0.93 0.62
SoilLittDecomp 1 6.12 23.30 3.81
SoilLittDecomp 2 1.18 1.89 1.60
Phenology 2.26 0.58 0.26
Growth and Root Respiration 1.03 0.43 0.42
StateUpdate 1 2.79 12.21 4.39
SoilLittVertTransp 5.94 17.35 2.92
GapMortality 2.56 17.54 6.85
StateUpdate 2 1.88 4.95 2.64
FireMod 4.84 11.19 2.31

Total 50.05 150.2 3.00

overhead, and total instructions issued, are measured to frame performance dis-
cussion in this work. The overheads listed in Table 2 are the percentage of
wallclock time spent on launching the kernel, allocating memory, and creating
device streams (if applicable). Nsight Systems drastically increases initial kernel
launch times but agrees with Nsight Compute in reporting the kernel compute
time, so to consistently calculate overhead, we subtract the kernel compute time
from the total wallclock time of non-profiling runs and take the percentage.

SoilLittVertTransp The initial OpenACC implementation of SoilLittVert-
Transp had the slowest performance of the ecosystem dynamics model and even
the full E3SM Land Model runs. The reliance of the CPU version on dynami-
cally allocated arrays can be distilled to the over-inflated number of instructions
reported on the GPU, which is nearly three orders of magnitude larger than that
with the arrays refactored out (Table 2). The memory workload and warp state
metrics further support that this memory is the bottleneck by showing very high
L1 and L2 hit rates and related stalls (not listed in the paper).

After the initial refactoring (Mem Opt. in Table 2), the performance is still
2.6 times slower than a single CPU core given a similar workload. While the
kernel only uses half the threads in a warp (on average), the profilers report the
kernel compute time as around 10ms. The overheads associated with launching
the kernel contribute the most to the total time, and the subroutine is simply too
big and complicated to be ported using OpenACC routine directives. The metrics
for the final OpenACC implementation illustrate much more efficient utilization

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_38

https://dx.doi.org/10.1007/978-3-031-08754-7_38


Developing an ELM Ecosystem Dynamics Model on GPU with OpenACC 11

of the GPU’s warps and pipelines due to smaller kernel size and techniques
described in Section 2. Note that the massive over 35 billion instructions in the
original code is caused by the excessive memory allocations.

FireFluxes The initial naive implementation of OpenACC worked better for
the FireFluxes subroutine, which consists exclusively of computations on global
data types. However, the overheads are significant because many nested loop
structures and the hundreds of global variables have to be passed as arguments
by the kernel launcher. The final optimizations resulted in a great increase in
the required instructions due to the changes shown in Figure 5. With the asyn-
chronous kernel launches and high-efficient utilization of the GPUs resources,
the model performance on the GPU delivers a 2.3 speedup over the performance
on the CPU.

Table 2: High-level metrics for three kernels showing differences between optimization
methods. The routine directive can result in very high overheads, and poor memory
allocations result in large excess in instructions issued. For FireFluxes, the excess in-
structions are due to extra loops but is alleviated by better saturation of GPU.

Kernel Time(ms) Overhead(%) Instruction
(millions)

SoilLittVertTransp
Orig 10,000 49.8 34,500
Mem Opt 44.0 70.0 48.7
Final Opt 6.95 11.8 40.9

FireFluxes
Orig. 45.0 92 9.83
Opt 3.67 27.9 197

SetValues
Orig. 29.4 70.2 15.3
Opt. 15.4 11.6 14.5

SetValues The naive OpenACC implementation of the SetValues functional
group had a speedup of around 1.5 times over the CPU code, but the total time
taken was significant relative to the other modules. The SetValues subroutines
involved initializing hundreds of arrays of three derived types at the Patch and
Column level, which can all be done independently. While the OpenACC rou-
tine directive allows for multiple levels of parallelism, compiling as a sequential
routine is the most reliable and free of compilation errors for our use case. The
profiling data identified that kernel launch overhead was the bottleneck, and so
the routines were simplified as described in Section 2.3. The overhead is greatly
reduced and mostly due to CUDA API calls to allocate memory on the host and
device and create streams with a final speedup of 3.0.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_38

https://dx.doi.org/10.1007/978-3-031-08754-7_38


12 P. Schwartz et al.

4 Conclusion and future work

The study reports design and optimization strategies for developing an ELM
ecosystem dynamics model using compiler directives (OpenACC) on NVIDIA
GPUs. We have restructured the code to reduce the memory footprint and to
increase the parallelism, so that the code can be programmed with OpenACC di-
rectives efficiently. The routine directive and deepcopy capabilities of OpenACC
provided a robust method for accelerating very complex ELM modules, with
certain functions receiving immediate speedup.

After code analyses and refactoring, the parallel GPU implementation (with
a small memory footprint of 300 MB) achieved a 3.0-times speedup over the
original CPU code on a fully loaded Summit computing node. Computationally,
ELM doesn’t have a single submodel that dominates run time but around a
dozen complex components that contribute more or less equally. Accelerating
the full code base requires a flexible approach that can handle different algo-
rithms, and this work demonstrates methods for reworking algorithms and data
structures in tandem with compiler directives to tackle exascale climate simula-
tions. Although this study is not intended to improve the ELM performance on
the CPUs, this study revealed several limitations of the original CPU code that
was implemented without prudent considerations of memory usage and alloca-
tion. Some techniques mentioned in the study (such as reducing the memory
footprint) also have benefits for the CPU-based ELM code. Future work will
focus on the parallelization of other models within ELM and further integrated
performance tuning. For the ultra-high resolution ELM simulation over North
America, if we assign 36000 gridcells to each node, the 24 million gridcells of
North America require 680 nodes, which is around 15% of the total capability of
the 4608-node Summit. With an estimated 3.0 times overall speedup, a 100-year
simulation over North America takes around 2 days.

References

1. Bertagna, L., Guba, O., Taylor, M.A., Foucar, J.G., Larkin, J., Bradley, A.M.,
Rajamanickam, S., Salinger, A.G.: A performance-portable nonhydrostatic at-
mospheric dycore for the energy exascale earth system model running at cloud-
resolving resolutions. In: SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis. pp. 1–14. IEEE (2020)

2. Bourzac, K.: Supercomputing poised for a massive speed boost. Nature 551(7680),
554–557 (2017)

3. Burrows, S., Maltrud, M., Yang, X., Zhu, Q., Jeffery, N., Shi, X., Ricciuto, D.,
Wang, S., Bisht, G., Tang, J., et al.: The doe e3sm v1. 1 biogeochemistry configura-
tion: Description and simulated ecosystem-climate responses to historical changes
in forcing. Journal of Advances in Modeling Earth Systems 12(9), e2019MS001766
(2020)

4. Golaz, J.C., Caldwell, P.M., Van Roekel, L.P., Petersen, M.R., Tang, Q., Wolfe,
J.D., Abeshu, G., Anantharaj, V., Asay-Davis, X.S., Bader, D.C., et al.: The doe
e3sm coupled model version 1: Overview and evaluation at standard resolution.
Journal of Advances in Modeling Earth Systems 11(7), 2089–2129 (2019)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_38

https://dx.doi.org/10.1007/978-3-031-08754-7_38


Developing an ELM Ecosystem Dynamics Model on GPU with OpenACC 13

5. Kim, J.Y., Kang, J.S., Joh, M.: Gpu acceleration of mpas microphysics wsm6 using
openacc directives: Performance and verification. Computers & Geosciences 146,
104627 (2021)

6. Thornton, P.E., Shrestha, R., Thornton, M., Kao, S.C., Wei, Y., Wilson, B.E.:
Gridded daily weather data for north america with comprehensive uncertainty
quantification. Scientific Data 8(1), 1–17 (2021)

7. Wang, D., Wu, W., Janjusic, T., Xu, Y., Iversen, C., Thornton, P., Krassovisk, M.:
Scientific functional testing platform for environmental models: An application
to community land model. In: International Workshop on Software Engineering
for High Performance Computing in Science, 37th International Conference on
Software Engineering (2015)

8. Wang, D., Xu, Y., Thornton, P., King, A., Steed, C., Gu, L., Schuchart, J.: A
functional test platform for the community land model. Environmental Modelling
& Software 55, 25–31 (2014)

9. Zhang, S., Fu, H., Wu, L., Li, Y., Wang, H., Zeng, Y., Duan, X., Wan, W., Wang,
L., Zhuang, Y., et al.: Optimizing high-resolution community earth system model
on a heterogeneous many-core supercomputing platform. Geoscientific Model De-
velopment 13(10), 4809–4829 (2020)

10. Zheng, W., Wang, D., Song, F.: Xscan: an integrated tool for understanding open
source community-based scientific code. In: International Conference on Compu-
tational Science. pp. 226–237. Springer (2019)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_38

https://dx.doi.org/10.1007/978-3-031-08754-7_38

