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Abstract. The cross-correlation function appears in many fields with
time-series data, and speeding up the computation is essential given the
recent accumulation of significant amounts of data. The cross-correlation
function can be calculated as a matrix-matrix product, and a significant
speed-up can be expected utilizing Tensor Core, which is a matrix-matrix
product acceleration unit of the latest NVIDIA Graphics Processing
Units (GPUs). In this research, we target a new precision data type called
the TensorFloat-32, which is available in the Ampere architecture. We
develop a fast calculation method considering the characteristics of the
cross-correlation function and TensorCore. Our method achieved a very
high performance of 53.56 TFLOPS in the performance measurement
assuming seismic interferometry using actual data, which is 5.97 times
faster than cuBLAS, a widely used linear algebra library on NVIDIA
GPUs. In addition, the accuracy of the calculation result is sufficiently
high compared to the 64-bit floating-point calculation, indicating the ap-
plicability of Tensor Core operations using TensorFloat-32 for scientific
calculations. Our proposed method is expected to make it possible to
utilize a large amount of data more effectively in many fields.

Keywords: Cross-correlation function · GPU computing · Tensor Core.

1 Introduction

The cross-correlation function expresses the similarity or difference between two
time-series data. This calculation is widely used in many fields dealing with
time-series data, such as radar detection [2], the discovery of gravity waves in
physics [3], and detecting earthquakes and volcanic events by matched filtering
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[5][6]. A large amount of data has been amassed with the advancement of ob-
servation technology, and it is crucial to reduce the computational cost of the
cross-correlation function to utilize these data more effectively.

In recent years, many computers equipped with Graphics Processing Units
(GPUs) have appeared, and many scientific calculations have been accelerated
utilizing GPUs. A GPU-based approach has been proposed to calculate cross-
correlation functions [9], but further speed-up can be expected by developing
methods based on the latest computer architecture.

NVIDIA’s Volta architecture [10] and later GPUs have not only the usual
arithmetic units but also matrix-matrix product acceleration units called Ten-
sor Core [11]. Tensor Core can perform matrix-matrix products as a hardware
function and maintains exceptionally high theoretical performance, which is one
of the main features of the latest NVIDIA GPUs.

A study on accelerating the cross-correlation function calculation targeting
the Tensor Core with the Volta architecture was performed by Yamaguchi et al.
[12]. The Tensor Core with the Volta architecture supports only 16-bit floating-
point arithmetic (FP16), making it challenging to use for scientific calculations
that require high precision and a wide dynamic range. Yamaguchi et al. solved
this problem by introducing local normalization considering the characteristics of
the cross-correlation function and Tensor Core; they achieved a 4.47 fold speed-
up while maintaining accuracy compared to the matrix-matrix product function
of cuBLAS [13], a matrix arithmetic library on GPUs that also utilizes Tensor
Core.

Many systems equipped with NVIDIA Ampere architecture GPU [14] have
been established in the last few years. In addition to FP16, the Tensor Core with
the Ampere architecture can handle various data precision types such as 8-bit
integer (INT8), Brain Floating-Point (bfloat16), and TensorFloat-32 (TF32).
Further computation speed-up can be expected utilizing these precision data
types. TF32 is a new type of floating-point that supports the same range of
values as the 32-bit floating-point (FP32) with the same precision as FP16, and
in many cases, calculations that require scaling to avoid over/underflow in FP16
can be performed without scaling.

The calculation using TF32 with Tensor Core can be executed through
cuBLAS, and some speed-up can be easily obtained. However, since the compu-
tation speed of Tensor Core is much faster than the memory access bandwidth
of the GPU, the performance of Tensor Core may not be sufficiently high due
to the memory access bandwidth limitation. This problem can be avoided by
understanding the behavior of Tensor Core and implementing it in accordance
with the characteristics of the cross-correlation function calculation, and further
acceleration can be expected.

In this research, we develop a method to accelerate the calculation of the
cross-correlation function using a TF32 Tensor Core with Ampere architecture
based on the method of Yamaguchi et al. Since Ampere is the first architecture
equipped with Tensor Core that can handle TF32 precision, we initially inves-
tigate its behavior, and then develop a method for calculating cross-correlation

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_37

https://dx.doi.org/10.1007/978-3-031-08754-7_37


Cross-correlation Function Accelerated by Tensor Cores with TF32 3

functions that can exploit the high performance of the Ampere architecture.
Our proposed method enables faster calculation of the cross-correlation function
compared to the matrix-matrix product function of cuBLAS, which can also use
Tensor Core with TF32.

Since the calculation of the cross-correlation function is mathematically a
one-dimensional convolution operation, the method in this study is expected to
be effective in many fields.

The rest of this paper is organized as follows. Section 2 describes how to
use Tensor Core with TF32 and implement it to achieve higher performance.
Afterward, we describe the specific calculation method of the cross-correlation
function. In Section 3, we apply our proposed method to the cross-correlation
function calculation using real observed waveforms in the seismic interferometry
and discuss its performance and accuracy. Finally, Section 4 summarizes the
paper.

The code we developed can be available on GitHub repository [1].

2 Methodology

2.1 Usage of Tensor Cores with TF32

Tensor Core is a matrix-matrix product acceleration unit introduced in the Volta
architecture, and can execute Fused Multiple-Add instruction C ← AB + C
for small matrices as a hardware function. TF32 is a new precision data type
available in the Tensor Core with Ampere architecture. It consists of a 1-bit sign
part, an 8-bit exponent, and a 10-bit mantissa, for a total of 19 bits, and has
the same dynamic range and precision as FP32 and FP16, respectively. Tensor
Core operations specify the size of the matrices that can be executed; in the case
of A and B being TF32 and C being FP32, the matrix sizes Am×k,Bk×n, and
C m×n must be (m,n, k) = (16, 16, 8). Hereinafter, we use the notation A,B,C
for the whole matrix, not the small submatrix. In CUDA C++, Tensor Core
operations are available through Warp Matrix Multiply-Accumulate (WMMA)
API. Fig. 2 shows the basic usage of WMMA API. The execution flow is as
follows. Here, 32 threads (1 warp) work together to compute the matrix-matrix
product of (m,n, k) = (16, 16, 8).

(1) Define a fragment (i.e., a variable for each thread required for execution in
Tensor Core) (wmma::fragment)

(2) Load data from shared memory to the fragment (wmma::load matrix sync)
(3) Perform matrix-matrix product using the fragment (wmma::mma sync)
(4) Store the result in the fragment of the shared memory (wmma::store matrix sync)

In the case of a matrix-matrix product on a GPU, the shared memory can
be used as a buffer for the global memory to perform the calculations more
efficiently. When the kernel is executed, data required for computation is stored
in the global memory. Global memory can be accessed by all threads and has a
large capacity, but it requires long cycles for memory access. Therefore, hiding
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Fig. 1. Comparison of FP32, TF32, and FP16 format
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// a_shmem, b_shmem and c_shmem are shared memory
__device__ void matmul_tensor_16_16_8 (float *a_shmem, float *b_shmem, float *c_shmem)
{

wmma::fragment<wmma::matrix_a, 16, 16, 8, wmma::precision::tf32, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, 16, 16, 8, wmma::precision::tf32, wmma::col_major> b_frag;
wmma::fragment<wmma::accumulator, 16, 16, 8, float> c_frag;

// load values from shared memory to fragment
wmma::load_matrix_sync(a_frag, a_shmem, 8);
wmma::load_matrix_sync(b_frag, b_shmem, 8);

wmma::fill_fragment(c_frag, 0.0f);

// convert to TF32
for (int i = 0; i < a_frag.num_elements; ++i) a_frag.x[i] = wmma::__float_to_tf32(a_frag.x[i]);
for (int i = 0; i < b_frag.num_elements; ++i) b_frag.x[i] = wmma::__float_to_tf32(b_frag.x[i]);

// execute matrix Fused Multiply-Add 
wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);

// store values from fragment to shared memory
wmma::store_matrix_sync(c_shmem, c_frag, wmma::col_major);

}

Fig. 2. A basic usage of Tensor Core operations with TF32 by calling WMMA API in
CUDA C++

the latency becomes difficult when access to global memory occurs frequently.
On the other hand, shared memory can only be accessed from within the same
thread block and has limited capacity, but the number of cycles associated with
access is shorter than that of global memory, so performance improvement can
be expected if it is well utilized.

As mentioned above, 32 threads (1 warp) performs matrix-matrix product
of (m,n, k) = (16, 16, 8) in the operation using Tensor Core with TF32. In this
case, each matrix component must be distributed and stored in each of the
32 threads in the warp, which is called a fragment. The result of the matrix-
matrix product is also distributed and stored in the fragment of each thread. The
mapping pattern between this matrix and the fragment is complex. Therefore,
in CUDA C++, wmma::{load,store} matrix sync is provided as an API to
facilitate this mapping. These functions do not require us to consider complicated
fragment mapping patterns, but they need shared memory for mapping to and
from fragments. Therefore, when the functions are called frequently, the amount
of access between the shared memory as a buffer and for this purpose increases.
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Given the extremely high computation speed of Tensor Core, the performance
is easily constrained by the shared memory access bandwidth. The fragment is
internally represented as a set of registers, and the mapping pattern of the Volta
architecture with FP16 has been analyzed in the previous study [15]. Therefore,
by taking the same approach in this research, it is possible to directly map the
corresponding values from the shared memory as a buffer to the registers without
using wmma::{load,store} matrix sync. However, since TF32 is the first type
introduced in Tensor Core with Ampere architecture and the supported matrix
size is different from FP16, we cannot correctly calculate it by the mapping
pattern described in previous work. Here, we explore the mapping pattern of
the fragment with TF32 in the Ampere architecture and implement it in a way
suitable for the Ampere architecture.

The fragment is a CUDA C++ structure that holds the number of elements it
owns as num elements and the values of the num elements fragments as mem-
ber variables x[i]. Thus, we can figure out the mapping pattern by actually
outputting the thread number and the value of the fragment in the warp, as
shown in Fig. 4, First, we present fragments of the matrix A,B (called ma-
trix A and matrix B in the WMMA API). These mapping patterns can be de-
termined by generating a matrix with unique non-overlapping elements (e.g.,
0,1,· · · ,127 ) executing wmma::load matrix sync, and then outputting the val-
ues of the fragment of each thread and comparing it with the original matrix.
The mapping pattern of matrix C (called accumulator in the WMMA API) can
be obtained by setting matrix A,B so that the result of the matrix-matrix prod-
uct is unique and without duplication, and then outputting the fragment after
calling wmma::mma sync in the same way as matrix A and matrix B.

Figs. 5 and 6 display the mapping patterns of matrix A (row major) and
matrix B (col major), and the accumulator stored in col major format, respec-
tively. Here, {col, row} major specifies whether the original two-dimensional
matrix is column-first or row-first when it is stored in memory in one dimen-
sion. The number in the matrix signifies the element order, and the number
in parentheses denotes the storage order in the register of each thread. For ex-
ample, in matrix A of row major and matrix B of col major, each thread has
four elements out of 16 × 8 (8 × 16) distributed elements, and the thread in
which threadIdx.x % 32 is 0 has 0th, 64th, 4th, 68th, and 0th, 4th, 64th, 68th
elements in the 0-index, respectively. In the accumulator stored as col major,
each thread has eight elements out of 16 × 16 distributed elements, and the
thread in which threadIdx.x % 32 is 0 has the 0th, 1st, 128th, 129th, 8th, 9th,
136th, and 137th elements in the 0-index. These mappings allow the values to
be stored directly in the registers without calling wmma::load matrix sync, but
the matrix-matrix product execution function of Tensor Core wmma::mma sync

can only pass the values through the fragment and cannot execute using reg-
isters. We overcame this problem using CUDA PTX inline assembly similar to
Yamaguchi et al. PTX is a pseudo-assembly language in CUDA, that allows us to
write low-level code with higher flexibility than the standard API. Fig. 7 shows
the PTX inline assembly of wmma::mma sync for TF32. Based on these mapping
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Fig. 3. A simplified data flow of the Tensor Core execution with TF32. Dashed line:
use wmma::load matrix sync API to load/store values, Solid line: directly load/store
values based on mapping patterns without using the API (proposed method).

…

int thid = threadIdx.x%32;
for (i = 0; i < a_frag.num_elements; ++i) printf(“%d %f\n”, thid, a_frag.x[i]); 
for (i = 0; i < b_frag.num_elements; ++i) printf(“%d %f\n”, thid, b_frag.x[i]));

…

wmma::mma_sync(c_frag,a_frag, b_frag, c_frag);
for (i = 0; i < c_frag.num_elements; ++i) printf(“%d %f\n”, thid, c_frag.x[i]);

Fig. 4. A way to examine the mapping pattern from shared memory to Tensor Core
fragments and from Tensor Core fragments to shared memory with TF32

patterns, together with the inline PTX assembly, we can realize fast memory ac-
cess and execution without wmma::load matrix sync even when TF32 is used
in the Ampere architecture.

2.2 Calculation of Cross-correlation Function Using Tensor Cores

The cross-correlation is a function calculated to check the similarity or deviation
between two time-series data. The cross-correlation function between two wave-
forms Xi and Xj of length T can be expressed as a function of the time shift τ ,
as in Eq. (1).

CCi,j(τ) =

T∑
t=1

Xi(t)Xj(t+ τ) (1)

The cross-correlation function can also be calculated in the frequency domain,
but we only deal with it in the time domain. Focusing on a single τ , the calcu-
lation of the cross-correlation function is the inner product of two waveforms,
which can be calculated as a matrix-matrix product operation for multiple wave-
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threadIdx.x % 32
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0 (1) 1 2 3 4 (3) 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

64 (2) 65 66 67 68 (4) 69 70 71

72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87

88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103

104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119

120 121 122 123 124 125 126 127

matrix 𝐀 (row-major) matrix 𝐁 (column-major)

0 (1) 8 16 24 32 40 48 56 64 (3) 72 80 88 96 104 112 120

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121

2 10 18 26 34 42 50 58 66 74 82 90 98 106 114 122

3 11 19 27 35 43 51 59 67 75 83 91 99 107 115 123

4 (2) 12 20 28 36 44 52 60 68 (4) 76 84 92 100 108 116 124

5 13 21 29 37 45 53 61 69 77 85 93 101 109 117 125

6 14 22 30 38 46 54 62 70 78 86 94 102 110 118 126

7 15 23 31 39 47 55 63 71 79 87 95 103 111 119 127

Fig. 5. Mappings of wmma:fragment<wmma::matrix a, 16, 16, 8,

wmma::precision::tf32, wmma::row major> and wmma:fragment<wmma::matrix b,

16, 16, 8, wmma::precision::tf32, wmma::col major> with Ampere architecture.
The number in parentheses shows the order of each value in a fragment.

form pairs with multiple time shifts simultaneously, as presented in Eq(2). We
apply the Tensor Core operation to this matrix-matrix product calculation.


CC1,1(0) CC1,1(1) CC1,1(2) CC1,1(3)
CC2,1(0) CC2,1(1) CC2,1(2) CC2,1(3)
CC3,1(0) CC3,1(1) CC3,1(2) CC3,1(3)
CC4,1(0) CC4,1(1) CC4,1(2) CC4,1(3)



=


X1(1) X1(2) X1(3) X1(4)
X2(1) X2(2) X2(3) X2(4)
X3(1) X3(2) X3(3) X3(4)
X4(1) X4(2) X4(3) X4(4)



X1(1) X1(2) X1(3) X1(4)
X1(2) X1(3) X1(4) X1(5)
X1(3) X1(4) X1(5) X1(6)
X1(4) X1(5) X1(6) X1(7)

 (2)

In Yamaguchi et al.’s method, cross-correlations are simultaneously com-
puted for time shifts of N time steps for 16 waveforms of length 256 per 1 warp
(32 threads). Thus, in each warp, the product of matrix A of size 16 × 256 and
matrix B of size 256 × N is calculated by executing the matrix-matrix product
of size 16 × 16 and 16 × 16 multiple times. In this study, we target matrix-
matrix product of these sizes, but the size of matrices supported by Tensor Core
vary between FP16 and TF32. Thus, we calculate the matrix-matrix product of
size 16 × 16 by performing the matrix product of size 16 × 8 and 8 × 16 twice.

As explained above, the matrix-matrix product calculation on the GPU can
be performed more efficiently utilizing shared memory. In this research, shared
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threadIdx.x % 32

0 16

1 17

2 18

3 19

4 20

5 21

6 22

7 23

8 24

9 25

10 26

11 27

12 28

13 29

14 30

15 31

matrix 𝐂 (column-major)

0 (1) 16 32 48 64 80 96 112 128 (3) 144 160 176 192 208 224 240

1(2) 17 33 49 65 81 97 113 129 (4) 145 161 177 193 209 225 241

2 18 34 50 66 82 98 114 130 146 162 178 194 210 226 242

3 19 35 51 67 83 99 115 131 147 163 179 195 211 227 243

4 20 36 52 68 84 100 116 132 148 164 180 196 212 228 244

5 21 37 53 69 85 101 117 133 149 165 181 197 213 229 245

6 22 38 54 70 86 102 118 134 150 166 182 198 214 230 246

7 23 39 55 71 87 103 119 135 151 167 183 199 215 231 247

8 (5) 24 40 56 72 88 104 120 136 (7) 152 168 184 200 216 232 248

9 (6) 25 41 57 73 89 105 121 137 (8) 153 169 185 201 217 233 249

10 26 42 58 74 90 106 122 138 154 170 186 202 218 234 250

11 27 43 59 75 91 107 123 139 155 171 187 203 219 235 251

12 28 44 60 76 92 108 124 140 156 172 188 204 220 236 252

13 29 45 61 77 93 109 125 141 157 173 189 205 221 237 253

14 30 46 62 78 94 110 126 142 158 174 190 206 222 238 254

15 31 47 63 79 95 111 127 143 159 175 191 207 223 239 255

Fig. 6. A mapping of wmma:fragment<wmma::accumulator, 16, 16, 8, float> with
Ampere architecture. The number in parentheses shows the order of each value in a
fragment.

asm("{¥n¥t" 
"wmma.mma.sync.aligned.row.col.m16n16k8.f32.tf32.tf32.f32 {%0,%1,%2,%3,%4,%5,%6,%7},
{%8,%9,%10,%11},{%12,%13,%14,%15},{%16,%17,%18,%19,%20,%21,%22,%23};¥n¥t"
"}"
: "=f"(cv[0]),"=f"(cv[1]),"=f"(cv[2]),"=f"(cv[3]),"=f"(cv[4]),"=f"(cv[5]),"=f"(cv[6]),"=f"(cv[7])
: "r"(av[0]),"r"(av[1]),"r"(av[2]),"r"(av[3])

"r"(bv[0]),"r"(bv[1]),"r"(bv[2]),"r"(bv[3])
"f"(cv[0]),"f"(cv[1]),"f"(cv[2]),"f"(cv[3]),"f"(cv[4]),"f"(cv[5]),"f"(cv[6]),"f"(cv[7]));

Fig. 7. PTX inline assembly of Tensor Core operation with TF32

memory is also used as a buffer for global memory so that the access to global
memory with long latency is minimized.

In the case of calculating the cross-correlation function, the matrix B can
be constructed by sequentially shifting single time-series data, as shown on the
right-hand side of Eq. (2). Since the size of matrix B is 256 × N , a typical
calculation requires a total of 256 × N elements to be loaded from the global
memory. Conversely, by employing the characteristics of the cross-correlation
function calculation, we only need to read a total of 256 + N − 1 data, signifi-
cantly reducing memory access cost and usage. As N increases, the amount of
data read decreases in proportion to the amount of computation, which is ex-
pected to improve the performance. However, as memory usage increases, hiding
the latency associated with operations becomes more difficult, resulting in per-
formance degradation. Yamaguchi et al. stated that N = 96 is the equilibrium
point in the performance measurement, and the same tendency was observed in
our experiment, so the calculation is performed with N = 96 in the next section.

For the Tensor Core with Volta architecture, matrices A and B are supported
only for FP16. FP16 has a much narrower dynamic range than the FP32/64-
bit floating-point (FP64), which is generally used in scientific computing and
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may cause over/underflow during matrix-matrix product operation. In Yam-
aguchi et al.’s method, local scaling is applied to matrices A,B to prevent
over/underflow during the computation. Although the calculation of the scal-
ing value was quickly performed via the shuffle instructions in the warp, it was
necessary to multiply the scaling value locally after every Tensor Core execu-
tion. Therefore, another set of registers was allocated and used as buffers for the
calculation results, and the scaling values were multiplied when adding them to
the buffers. In short, the matrix C was assigned zero for every calculation, and
buffer D was assigned C multiplied by the local scaling value after performing
C← AB+C. In contrast, TF32 can handle the same range of values as FP32, so
the calculation can be performed correctly without scaling in many cases. Conse-
quently, the scaling restriction mentioned above is eliminated, and computation
can be performed only using one set of registers, meaning that the matrix C only
needs to be initialized to zero once at the beginning. Afterward, the register con-
taining the calculation result can be used directly for the Tensor Core execution
in the subsequent corresponding execution, as in C← AB+C← AB+C← · · · .
This reduces the number of registers required for execution and enables more
efficient computation.

TF32 is currently supported only for operations on Tensor Core and cannot
be used for normal calculations on a CPU and GPU. Therefore, both matrices
A and B are transferred to the GPU as FP32 at the kernel execution time and
converted to TF32 by wmma:: float to tf32 when they are stored in shared
memory as buffers. The input and output of wmma:: float to tf32 is FP32,
but the output is numerically TF32. If the FP32 type, which is numerically
TF32, is mixed with the usual FP32 type operations, the precision and range of
the results are undefined [16], but this is not problematic in this time because
there is no need to perform scaling or other operations on matrices A or B on
the GPU.

An overview of the above computation procedure per thread block is shown
in Fig. 8.

3 Application and Performance Measurement

3.1 Application Example

An example dealing with the calculation of cross-correlation functions in seismol-
ogy is the seismic interferometry method [17]. In the seismic interferometry, the
cross-correlation function of the waveforms observed at two different stations is
calculated and stacked over a long period. In this way, a pseudo-response wave-
form (Green’s function) in which one station is regarded as the source and the
other as the observation point can be synthesized [18] (Fig. 9). The earth is
constantly vibrating due to natural earthquakes and other microtremors such
as pulsations caused by ocean waves and constant microtremors due to human
activities. By applying the seismic interferometry to these wavefields, it is ex-
pected that Green’s function can be obtained without the use of artificial seismic
sources [19].
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Fig. 8. An overview of the cross-correlation function calculation using Tensor Core
with TF32 per thread block. L is the total time shift of the cross-correlation function.

In recent years, many seismic observation networks, such as the MOWLAS
[20], have been operating in Japan, and a large amount of data has been accu-
mulated. By continuously applying seismic interferometry to these observation
data, it is expected to lead to the realization of the continuous monitoring of
underground structures without the need for artificial seismic sources. However,
since the number of calculations of the cross-correlation function increases pro-
portionately to the square of the number of observation points, we are currently
able to handle only a portion of the data (e.g., by narrowing down the number
of observation points).

In this measurement, we calculate the cross-correlation function for 256 time
steps of 16 channels and 1 channel for a total of 4.32 × 106 time shifts, as in
Yamaguchi et al. In other words, we calculate the cross-correlation function as a
matrix-matrix product of size 16 × 256 and size 256 × (4.32×106) and measure
the performance of our proposed method. The matrices are constructed using
the actual observed data of K-net [23] which is one of the MOWLAS.

3.2 Performance Measurement

At this time, we measure the elapsed time and accuracy of three types of kernels,
including the proposed method. The first is the kernel of Yamaguchi et al. that
performs computations on FP16 with local scaling and runs on a NVIDIA V100
GPU with the Volta architecture. The other is a kernel using cublasGemmEx,
which is a dense matrix-dense matrix product function in cuBLAS, a linear
algebra library provided by NVIDIA, and runs on a NVIDIA A100 GPU with
the Ampere architecture. In cublasGemmEx, we can select the data precision type
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Fig. 9. A basic concept of seismic interferometry. Green’s function can be synthesized
by calculating the cross-correlation function of the observed waves at two observation
points and stacking them over a long period of time.

and execution mode through arguments and options. We set the calculation to
be performed using Tensor Core with TF32 precision. Unlike the other kernels,
matrix B is constructed explicitly in advance, and the computation is performed.
Lastly, we analyze our proposed method using TF32 with Tensor Core, executed
on A100 GPU.

Table 1 displays the peak hardware performance of the NVIDIA V100 and
A100 GPUs used in this measurement. We use nvcc V11.2.67 in nvhpc 21.2 as
the compiler and --generate-code arch=compute {70,80},code=sm {70,80}
-O3 --use fast math as the compile option for V100 and A100, respectively.
The elapsed time is measured using nsys nvprof, and the FLOP is counted man-
ually.

We also evaluate the calculation result accuracy of each kernel in comparison
with the calculation results of FP64 on the CPU. The accuracy is calculated
using Eq. (3), which is defined as the largest absolute error between the result of
each kernel and FP64. In order to compute the cross-correlation function on the
CPU, we use cblas dgemm, a dense matrix-dense matrix product function in the
Intel Math Kernel Library (MKL). We use the Xeon Platinum 8360Y (36 cores),
and the peak FP64 performance of this CPU is 2.765 TFLOPS. Additionally, We
use icc 19.1.3.304 as the compiler and set -O3 -mkl=parallel as the compile
option and KMP AFFINITY=compact as the environment variable. For reference,
we also measure the MKL kernel performance.

ERR = max
i,j

∣∣CCi,j − CCFP64
i,j

∣∣ (3)

Table 2 lists the elapsed time, execution performance, and ERR of each ker-
nel. First, Yamaguchi et al.’s kernel using FP16 demonstrates a performance of
25.90 TFLOPS. This is higher than the theoretical performance ratio of FP32
in V100, which is 20.72% of the theoretical performance of FP16 with Tensor
Core in V100. In addition, local scaling keeps the error as small as 5.6 × 10−4.
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Table 1. Comparison of peak performance between the NVIDIA V100 and A100 GPUs.

V100 16GB SXM A100 40GB SXM

FP64 performance 7.8 TFLOPS 9.7 TFLOPS
FP32 performance 15.7 TFLOPS 19.5 TFLOPS
FP16 Tensor Core performance 125 TFLOPS 312 TFLOPS
TF32 Tensor Core performance N/A 156 TFLOPS
Memory bandwidth 900 GB/s 1555 GB/s

Table 2. Performance and precision of each kernel.

Kernel Elapsed time TFLOPS (ratio to peak) ERR

Yamaguchi (2019) FP16 (V100) 1.366 ms 25.90 (20.72%) 5.6× 10−4

cuBLAS TF32 (A100) 3.947 ms 8.97 (5.75%) 2.0× 10−4

Proposed TF32 (A100) 0.661 ms 53.56 (34.34%) 2.0× 10−4

MKL FP64 (Xeon Platinum) 84.91 ms 0.42 (15.07%) 0.0

On the other hand, our method using TF32 with Tensor Core achieves a very
high execution performance of 53.56 TFLOPS, which is 34.34% of the theoretical
performance of TF32 with Tensor Core on A100 and higher than the peak per-
formance ratio of Yamaguchi et al.’s kernel. While the theoretical performance
of A100’s TF32 with Tensor Core is 1.25 times higher than that of V100’s FP16
with Tensor Core, the obtained execution performance is 2.07 times higher, likely
because the wide dynamic range of TF32 eliminates the need for scaling and al-
lows for more efficient use of Tensor Core. In terms of accuracy, the maximum
error is 2.03 × 10−4, which is approximately half that of the FP16 calculation.
In addition, compared with the result on cuBLAS with TF32 with Tensor Core,
our proposed method achieves a speed-up of 5.97 times, indicating the proposed
method’s effectiveness. Finally, we compare the elapsed time on the CPU for
reference. In MKL, for matrices of the sizes targeted in this measurement, the
overhead of copying the matrices to the buffer becomes relatively large, and the
execution performance is as low as 0.42 TFLOPS (15.07% of the peak perfor-
mance). On the other hand, the proposed method achieves high performance
even for matrices of such sizes, resulting in a speed-up of 128.46 times when the
theoretical performance ratio is about 56.42 times. By implementing the calcu-
lation accounting for the characteristics of Tensor Core and the cross-correlation
function, we developed a method that can take advantage of the high perfor-
mance of Tensor Core with Ampere architecture.

4 Closing Remarks

In this study, we developed a fast computation method for cross-correlation
functions in the time domain utilizing Tensor Core with a NVIDIA Ampere
architecture GPU. Tensor Core with the Ampere architecture supports various
precision data types. We can expect a significant speed-up in many computations
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involving the matrix-matrix product by utilizing these data types. Tensor Core
has very high theoretical performance, but its computational performance is eas-
ily limited by the global and shared memory bandwidth when ordinary APIs are
used because of its extremely high speed. We first investigated the mapping pat-
tern between shared memory and the fragment for Tensor Core operation using
TensorFloat-32 precision on the Ampere architecture. By combining this with a
low-level description using PTX inline assembly, we have achieved an implemen-
tation that does not require a standard API, and our method is less constrained
by memory bandwidth. In the performance measurement of the cross-correlation
function calculation in seismic interferometry using actual seismic data, our pro-
posed method achieved a significant performance level of 53.56 TFLOPS, which
is 34.34% of the theoretical performance of TF32 with Tensor Core. Moreover,
our proposed method is 5.97 times faster than cuBLAS using TF32 with Tensor,
a linear algebra library commonly used on NVIDIA GPUs. The cross-correlation
function appears in many fields that deal with time-series data, and speeding
up the computation has become an important issue in light of the accumulation
of observation data, especially in recent years. It is expected that our proposed
method can enable analysis that makes fuller and more effective use of big data.
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