
Phase-field modelling of brittle fracture using
time-series forecasting⋆

Minh Ngoc Dinh1,∗, Chien Trung Vo2, Cuong Tan Nguyen1, Ngoc Minh La1

1 School of Science, Engineering and Technology RMIT University, Vietnam
2 Mechanical Engineering and Materials Science University of Pittsburgh, USA

Abstract. The crack propagation behavior can be considered a time-
series forecasting problem and can be observed based on the changes
of the Phase-field variable. In this work, we study the behavior of the
Isotropic Brittle Fracture Model (BFM), and propose a hybrid computa-
tional technique that involves a time-series forecasting method for find-
ing results faster when solving variational equations with a fine-grained.
We use this case study to compare and contrast two different time-
series forecasting approaches: ARIMA, a statistical method, and LSTM, a
neural network learning-based method. The study shows both methods
come with different strengths and limitations. However, ARIMA method
stands out due to its robustness and flexibility, especially when training
data is limited because it can exploit a priori knowledge.
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1 Introduction
Predicting the propagation of cracks that occur on a target material is an im-
portant problem in continuum damage mechanics. The BFM [1] is one of the
typical models, which bases on the concept of critical energy release rate in
order to evaluate and quantify crack formation and propagation. Importantly,
the performance of modelling crack formation and propagation is mesh size-
dependent, and many have tried to address this issue [2]. Recently, collecting
experimental/computational data to predict the crack propagation process us-
ing machine learning techniques becomes a mainstream approach.

There are two main approaches in the field of machine learning: statistical
methods and artificial neural network (ANN) architectures. Statistical methods
such as the Holt-Winters [3] or Autoregressive Intergrated Moving Average
(ARIMA) have shown to be robust and flexible, especially when fewer train-
ing data is available because they exploit a priori knowledge. However, these
techniques often assume the linearity in the data. Besides, ANNs such as Long
Short Term Memory (LSTM) [4] can approximate almost any function, given
enough training data. In this work, we study the behaviors of the Isotropic
BFM. We propose a hybrid framework where we utilize data collected from
computational brittle fracture simulations to enhance the time-series forecast-
ing capacity of machine learning techniques, especially when working with
fine-grained mesh. We use this case study to compare two different time-series
forecasting approaches: ARIMA and LSTM. Our main contributions are (1)
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a hybrid framework involves a time-series forecasting method for predicting
crack propagation behaviors, and (2) comparing the performance of traditional
forecasting techniques to deep learning-based algorithms.

Section 2 presents the Phase-field variable model. In section 3, we present
the framework using ARIMA and LSTM as time-series forecasting techniques.
We describe our case study in section 4. We show how time-series forecasting
can predict crack propagation behaviors, and evaluate both LSTM and ARIMA
models in terms of accuracy and compute performance in section 5. Section 6
presents the conclusion and future work.

2 Isotropic Brittle Fracture Model
2.1 Phase-field approximation
The Phase-field variable ϕ (x) is an approximated exponential function de-
pending on the spatial variable x, which is used to describe the damage state
of materials at each position in a continuum domain. The value of ϕ (x) varies
in [0, 1] as x varies from (−∞, 0] and [0,+∞) such that for ϕ (0) = 1 denotes
the cracked material and ϕ (±∞) = 0 represents the intact one. The diffusion
of the phase-field variable depends on the length scale parameter lc, and ϕ (x)
is the solution of the homogeneous differential equation, also called the Euler
equation of the variational principle: ϕ (x)− l2

c ∆ϕ (x) = 0 in Ω
Following the variational approach, the total potential Ψ forms the crack is:

Ψ (ϕ, u) =
∫
Ω

[(
1 − ϕ2

)
+ κ

]
ψ0 (ε) dΩ+

∫
Ω

Gc

2

[
l0∇ϕ · ∇ϕ +

1
l0

ϕ2
]

dΩ (1)

On the other hand, the total potential energy is equivalent to the internal en-
ergy of the system. The variation of the internal energy increment δWint and
the external work increment δWext are similarly expanded as follows:

δWint = δΨ =
∂Ψ
∂εij

δεij +
∂Ψ
∂ϕ

δϕ; δWext =
∫
Ω

bjδujdΩ +
∫

∂Ω

hjδujd∂Ω (2)

The residual δWint − δWext is a system of equations containing displacement
variables and phase-field computed by the principle of virtual work.
2.2 Treating the crack propagation process as a time-series
The crack diffusion of brittle materials, as described by the Phase-field vari-
able, could be fixed in an unchanged-dimensional matrix. Importantly, the
brittle fracture model is quasi-static, in which the load steps could be con-
sidered as time steps in the process of simulation. Msekh et al. [5] describe
the crack propagation as temporal-spatial dependent process. As every mesh
node on an arbitrary position has a temporal attribute, we investigate how
crack propagation can be predicted using time-series modelling techniques.

3 Time-series forecasting
Time-series forecasting analyses observations to (1) uncover potential structure
such as autocorrelation, trend or seasonal variation, and (2) produce monitor-
ing and forecasting capacity. There are two main approaches in time-series
forecasting: statistics-based method such as ARIMA and the deep learning-
based architectures such as LSTM [4]. This section demonstrates how both
techniques can be applied to forecast the crack propagation process.
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3.1 Statistics based time-series forecasting with ARIMA
Assuming time is a discrete variable and Xt denotes the observation at time t,
and ϵt denotes the zero-mean random noise term at time t. The autoregressive
(AR) process, and moving average (MA) can be combined as:

Xt =
k

∑
i=1

αiXt−i +
q

∑
i=1

βiϵt−i + ϵt (3)

The combination of the two schemes [6] takes both previous observations and
the progressive noise term into account: the “autoregressive” term k: presents
the lags of the series in the forecast, and the “moving average” term q: presents
the lags of the forecast errors. The ARIMA framework introduces an extra
parameter d, and performs time series forecasting for nonstationary series. An
ARIMA (k, d, q) forecasting model acts as a “signal filter” and a trend “filter”
that uses dth order differences to induce past observations into future forecasts.

∇dXt = ϵt +
k

∑
i=1

αi∇dXt−i +
q

∑
i=1

βiϵt−i; X̃t = ∇dX̃t +
d−1

∑
i=1

∇iXt−i (4)

We studied an application of ARIMA forecasting technique in our previous
work, where soft-errors from a running scientific simulation can be identified
through time-series analysis [7]. Because computational simulations such as
the Brittle Fracture Model do not incur noise, term q can be set to zero (q = 0).
We focus on terms d and k in below sections.
Determine differencing term ‘d′ We apply the Augmented Dickey-Fuller Test
(ADF) [7] on our time-series. ADF’s p-value was 0.689 (higher than the signif-
icant level 0.05), indicating the non-stationarity. Fig.1 shows that a 1st order of
differencing (d=1) is appropriate for our time series.

Fig. 1: Observed values per 100 timesteps (y/x-axis) with 1storder differencing.

The autoregressive term ′k′ Because our forecasting approach handles data
observations arriving sequentially and updates the models simultaneously,
which is more natural for many time-step based applications, k = 1 (i.e. AR(1))
is applicable for ARIMA model. As a result, we has the ARIMA(1,1,0) model
which is coined the “differenced first-order autoregressive model”.

Applying ARIMA to Phase-field value prediction Because ARIMA is a lin-
ear regression-based approach, we develop an algorithm to perform multi-step
out-of-sample forecast with re-estimation (i.e., the model is re-fitted each time
the model makes a prediction) [8]. Accordingly, the algorithm 1 below takes a
set of Phase-field values obtained from a BFM simulation with a parser grid,
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builds a forecast model, performs the forecast, and reports the RMSE of the
predictions. We describe how train and test sets are configured (i.e., the train-
ing portion rate R) along with the performance metrics in section 4 below.

3.2 Deep-learning based time-series modelling with LSTM
Recurrent Neural Network (RNN) uses sequential observations and learns
from the earlier stages to forecast future trends. Especially, Long Short-Term
Memory neural networks (LSTMs) captures and processes past and present
data items in a form of a transport line. Each cell is equipped with “gates” to
allow data items to be either disposed, filtered, or added to the next cells. Each
sigmoid layer produces outputs between [0, 1]. LSTM network consists of:

– Forget Gate: outputs 0 when the data item should be completely ignored.
– Memory Gate: selects a new data item to be stored in the cell.
– Output Gate: decides what a cell will output.

Algorithm 1 : Pseudo code for multi-step forecast of Phase-field value.
Input: Ainit: initial time-series dataset, A: the time-series dataset to be pre-
dicted, and R: training portion rate
Output: average RMSE value of the forecasted Phase-field values

1: procedure arima(history:)
2: model ← ARIMA(history, order=(1, 1, 0))
3: model fit ← model.fit()
4: return model fit.forecast()
5: #Split data into train set and test set
6: size ← length(A); train ← A[0..size] * R; test ← Ainit[length(train)..size]
7: observed ← train; predicts ← (); t ← length(train) + 1
8: while t < size then
9: #build ARIMA time series model and deliver forecast

10: predict.append(arima(observed))
11: observed.append(test[t]); t ← t+1
12: end while
13: return sqrt(mean square error(predicts,observed[length(train)..size)])

With LSTM, the process of training a subsequence in a continuous, non-ending
time-series might break down. Therefore, the internal state values of the LSTM
network must be reset by a forget gate at an appropriate time. We enhanced the
LSTM architecture [9] with a forget gate embedded to reset the internal state
value for each subsequent prediction (Fig.2). Specifically, the internal connec-
tions of the LSTM consist of 4 cells in each layer. The forget gate ft acts as
the filter to remove unnecessary information. When ft = 0, the information
is discarded, and when ft = 1 the necessary information is retained. Also,
we assume that the data generated by the BFM process bias-free. Thus, the
performance of LSTM cells does not depend on the bias term.

Applying LSTM for Phase-field variable prediction The overall process to
apply LSTM for Phase-field value prediction is different from the ARIMA al-
gorithm, where we use a set of Phase-field values obtained from a BFM simu-
lation with a parser grid for training the LSTM model. Similar to the ARIMA
algorithm, we output the Root Mean Square Error (RMSE) of the predictions.
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Fig. 2: LSTM cell with a forget gate.

4 Case Study - Single edge notched tensile
We consider a two-dimensional plane strain plate with size 1x1mm with a
crack described as a line at the left of the plate and positioned as (Fig. 3 (a)).
The material parameters are specified as: the Young’s modulus E = 210kN/mm2,
the Poisson’s ratio ν = 0.3, the critical energy release rate is Gc = 5N/mm and
the length scale parameter lc = 2mm. The plate is fixed at the bottom edge
and the load-displacement u at the top edge consists of 100 iterations with
the increment of displacement ∆u = 5e − 7mm. In this example, the specimen
with four mesh sizes and gradually increases the number of elements as 40x40,
50x50, 60x60, and 70x70. In this fracture model, the Phase-field variable is sig-
nificant to describe the formation of cracks. With mesh size 70x70, the values
of the phase-field variable in the vicinity of the crack will be affected by lc
(Fig.3 (b)), which determines the width and the diffusion of cracks. In this case
study we keep lc = 8h, with h being the size of each rectangular element. Af-
ter the phase-field variable of the sample changes, the displacement–reaction
force relations of mesh sizes are similar in the trend of behaviors.

The data of Phase-field variables at various mesh sizes are collected. We
vary the size of the Train set from 30%, 40%, and 50% of the data. We simulate
100 timesteps in our fracture simulation as 30% means 30 historical time-steps.
We observe how increasing the amount of training data affects the perfor-
mance of different time-series forecasting methods. We use the remaining data
values (e.g., the Test set) to measure the accuracy of using RMSE.

(a) (b)
Fig. 3: (a) Observed points in the plate, (b) The propagation of the crack.

5 Results
In this experiment, some critical points are observed by using K-means cluster-
ing to validate the utility and advantages of LSTM and ARIMA in the simula-
tion. However, the point in center of the plate is picked because it is the initial
position of crack propagation where the phase-field value varies from 0 to 1
over the period of simulation. Once a time-series forecasting model is trained
(using either 30% to 50% of the recorded Phase-field values), we keep predict-
ing Phase-field values across 100 time-steps using either the LSTM model or
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the ARIMA model. All prediction values are stored and later used to compute
the average RMSE value against the recorded Phase-field values (observations).

5.1 Prediction accuracy rate
The time-series data of the phase-field variable at three point (1),(2),(3) at Fig.3
(a) are shown with respect to Fig.4 (a),(b),(c) and Fig.4 (d),(e),(f). Overall, the
results indicate that the statistical method (captured by red-dashed lines) out-
performs the deep-neural network approach (captured by blue-dashed line)
in all configurations (mesh size combining with different amounts of training
data). ARIMA’s core principle is to describe the autocorrelation of a time-
series, thus it performs better given sudden changes in the changing rate of
a time series (for example, around time-step 65). Fig.4 depicts the ARIMA
one-step-ahead efficient forecast for this sort of behavior in our Phase-field
variable. Finally, the figures as well as the RMSE results, show that ARIMA
forecasting performs consistently, especially when training data is limited.

Deep learning methods such as LSTM requires more training data. How-
ever, our LSTM model can over-fit when the extrapolating time series present-
ing a trend. Consider the mesh size 40x40 (Fig.4 (a),(b),(c)). Our LSTM model
performs quite well as the LSTM curves track closely comparing to the obser-
vation curve. However, as we increase the mesh size, our LSTM model fails to
predict the plateau in Phase-field values from time-steps 65 and beyond. As
Fig.4 (d),(e),(f) show this over-fitting behavior as predictions shoot above or
below the expected Phase-field values.

(a) (b) (c)

(d) (e) (f)
Fig. 4: Forecasting Phase-field values (y-axis) at different steps (x-axis) for mesh
size 40x40 at (a),(b),(c) and mesh size 70x70 at (d),(e),(f).

5.2 Runtime performance of the prediction models
We observed that the computational costs for both machine learning models
depend on two factors: the size of the mesh and the Phase-field value data used
for training. Fig. 5 shows that increasing the amount of training data (30%
to 50%) increases the runtime for both models. ARIMA’s runtime increases
around 2000 milliseconds between 30% and 50%, while it was only an increase
of 800 milliseconds for the LSTM model. More importantly, with LSTM, as we
increase the mesh size, the training time remains relatively constant. ARIMA
model, on the other hand, shows a decrease in training time as the mesh size
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Fig. 5: Runtime (in milliseconds) for time-series forecasting models.
increases from 40x40 to 50x50 and 60x60. Overall, ARIMA’s runtime is still less
than LSTM’s runtime regardless of the size of data. That shows that statistical
approaches for time-series forecasting are still more favorable at large scales.

6 Conclusion and Future Work
The use of the phase-field variable in the illustration of crack propagation
is one of the state-of-art methods. The properties of a brittle fracture model
could be considered as a time-series for an online machine learning analysis
and prediction. In this paper, we described how forecasting approaches were
used to track the changes of the Phase-field value evaluated the performance
of techniques. Our results show ARIMA delivers higher precision and accu-
racy and is cheaper to train and faster to fit in predicting Phase-field values,
compared to LSTM. However, this work is limited to predicting Phase-field
values from running brittle fracture simulations with varying mesh sizes. For
future work, we also apply machine learning techniques to identify regions
with the concentration of high values of the Phase-field variable.
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