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Abstract. One of the leading approaches for solving various hard dis-
crete problems is designing advanced solvers based on local search heuris-
tics. This observation is also relevant to the low autocorrelation binary
sequence (LABS) — an open hard optimisation problem that has many
applications. There are a lot of dedicated heuristics such as the steepest-
descent local search algorithm (SDLS), Tabu search or xLostovka algo-
rithms. This paper introduce a new concept of combining well-known
solvers with neural networks that improve the solvers’ parameters based
on the local context. The contribution proposes the extension of Tabu
search (one of the well-known optimisation heuristics) with the LSTM
neural network to optimise the number of iterations for which particular
bits are blocked. Regarding the presented results, it should be concluded
that the proposed approach is a very promising direction for developing
highly efficient heuristics for LABS problem.
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1 Introduction

This paper concentrates on solving hard discrete problems using a combination
of local optimisation heuristics and neural networks that improves the chosen
parameters of heuristics based on the current computation context. The concept
is verified on the low autocorrelation binary sequence problem (LABS) and the
Tabu search algorithm.

LABS [10] consists of finding a binary sequence S = {sq, s1, ..., 5,—1} with
length L, where s; € {—1, 1}, which minimises energy function E(S):

L—k—1 L—1
Cr(S)= > sisizr and E(S) =Y CH(S) (1)
=0 k=1

There may varied techniques that try to solve the problem. The simplest
method of solving LABS is the application of exhaustive enumeration; this pro-
vides the best results, but can be applied only to small values of L. There are also
a lot of various heuristic algorithms that use some plausible rules to locate good
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sequences more quickly. A well-known method for such techniques is steepest de-
scend local search (SDLS) [1] or Tabu search [8]. In recent years, a few modern
solvers based on the ’self-avoiding walk’ concept have been proposed. The most
promising solvers are IssOrel [3] and zLostavka [4], which are successfully used
for finding skew-symmetric sequences of lengths between 301 and 401 [5]. These
techniques can also be parallelised utilising GPGPU architectures as has been
shown in the literature [12, 15].

A different direction of research is the application of agent-based biologically-
inspired computational systems. One of such meta-heuristics approach is the
concept of an evolutionary multi-agent system successfully applied for solving
complex continues and discrete optimisation problems such as LABS [12, 15].

In the presented work, a deep learning network is incorporated for estimating
optimal Tabu search parameters. The LSTM architecture was chosen as a base
model in different optimisation domains such as sequence-to-sequence learning
[13] or as a foundation of the pointer networks which are used to resolve the TSP
problem. In order to resolve this NP-hard problem, Vinyals et al. [14] proposed
training the recurrent neural network in a supervised manner to anticipate the
order of visited cities. This approach was extended in research [2] in which the
optimisation of the recurrent neural network which is resolving the TSP problem
was gained by using a policy gradient method. Those researches have become
the motivation for us to introduce the recurrent neural network as a support for
Tabu search algorithm in resolving LABS problem.

The paper is organised as follows. In the next section, the Tabu search is
presented as a starting point for further extensions. In the third section, a new
concept of Tabu search with LSTM extensions (for predicting the M parame-
ter) are described in detail. Then, the experimental results are presented and
conclusions are drawn in the following sections. The paper is summarised in the
last section where future work is also suggested.

2 Tabu search for LABS problem

The Tabu search is a well-known heuristic [9], adjusted to the LABS problem [6,
7]. The Tabu method can be seen as an extension of steepest descent local search
with so-called banned states. In a similar manner to SDLS, Tabu explores the
neighbourhood of a given sequence (i.e. all sequences with one bit changed) and
also introduces a Tabu array, with the same length as a LABS sequence, which
contains blocked indices. When a new better solution is found in an iteration,
the index which led to this sequence is placed in the Tabu array and is therefore
banned from further changes (in M following iterations). The details of the Tabu
search are presented in Algorithm 1.

In contrast to the SDLS algorithm, applying the Tabu mechanism with
blocked states helps to escape the attraction basins of a local minimum. The
consecutive iterations don’t have to produce sequences with lower energy if the
Tabu array contains the best sequences from the current neighbourhood. This
fact leads to proper directions in LABS solutions space exploration [11].
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Algorithm 1 The Tabu search algorithm for the LABS problem
(based on [7]). Symbols: S — input sequence; L — length of the sequence;
mazlters — number of iterations; E — sequence evaluation; tabu — integer vector
that describes how long sequence elements are blocked; minT abu, extral abu —
auxiliary numbers used to set values in vector tabu; M — number of iterations
for which a chosen bit should be blocked; changedBit — an index of element (a
bit) that has been changed.

1: function TABUSEARCH(S, mazIters)

2: int[ | tabu > integer vector initialised with zeros

3: minTabu = maxIters/10
4: extraTabu = maxIters/50
5: Sstart = Sbest =5
6: Epest = EVALUATE(Spest)
7 for i = 0 to maxIters — 1 do
8: Ei =00
9: for j=0to L —1do
10: Stmp = Sstart
11: Stmp[j] = =1 % Semp|5]
12: Etmp = EVALUATE(Stmp)
13: if ¢ > tabu[j] or Eimp < Epest then
14: if Etmp < E1 then
15: SZ = Stmp, EZ = Etmp
16: changedBit = j
17: if S; # null then > if better, non-blocked sequence is found
18: Sstart = Si > set the current sequence as the starting point
19: M = minTabu + RAND(0, extral abu)
20: tabu[changedBit] = i + M
21: if F; > Ep.s: then
22: Shest = Si7 Eyest = E;
23: return Spes:

3 Improving Tabu search with LSTM

LSTM is an example of artificial recurrent neural network architecture. Unlike
standard feedforward neural networks, LSTM has feedback connections. It can
process not only single data points, but also entire sequences of data.

The main goal of this paper is to device a more effective technique to deter-
mine the value of the M parameter, the use of which, enables finding a more
optimal value of the energy. For this purpose we introduce the LSTM neural
network which is able to predict the most effective value of this parameter for
a particular input sequence S with the length L and corresponding to this se-
quence energy F (see next subsection). For each different value of the parameter
L there is a separate trained model.

Prepare training data. In order for it to be possible to train the neural
network, for each value of the L parameter used in this paper, 1048576 (220)
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sequences were randomly generated and evaluated. The number of generated
sequences represents X%, Y%, Z% percent of the total solution space, respec-
tively for lengths 128, 192, and 256 (based on the formula %) Each generated
sequence has received its own random value of the M parameter from the range
[2;18] (adopted based on max iteration, see Section 4). Each tuple of sequence S
and parameter M are put as the input to the module which is searching optimal
sequence S’ which means with a minimum value of energy FE. This searching
is realised through the use of very effective GPGPU implementation of Tabu
search which was proposed in previous work [12]. Consequently, there is 220 S,
M, S’ and energy E which was calculated based on sequence S’ and its value of
parameter M. Finally, this value is the corresponding energy for the sequence S.
In order to teach the neural network to predict the optimal value of parameter M
for any sequence, as an input to neural network there is placed a pair sequence
S and energy E (the S’ sequence is not used in the next phases).

Finding optimal parameters. The optimal value of parameters which were
used in the training phase and to build neural network architecture, were deter-
mined empirically. Through the use of a very small part of the generated data,
we trained a separate model for each L with a different number of hidden units
(#HU), LSTM layers (#LL) and the value of learning-rate parameter (Ir). The
best results were gained for Ir equal to 0.0001, #HU equals 50 and #LL equals
2. The model was trained over seventy epochs with use of the MSE as loss func-
tion and the Adam optimiser. For the best gained results, we built the optimal
architecture of LSTM which then was used in real training and during the test
phase.

Training process. During the training phase (Fig. 1), as an input to the neu-
ral network, the sequence with the length L and normalised value of energy
calculated on the basis of this sequence is given (energies are normalised to the
range : [-1;1], through the usage the MinMaxScaler from scikit-learn library?).
In order to enhance the meaning of the energy, this value is copied to the input
vector L times (without this repetition, the energy value would be imperceptible
by LSTM model). During the training, the neural network is taught to extract
dependencies between the arranging binary data in the input sequences S, cor-
responding to this sequence energy E and the value of the M parameter which
is returned as an output of the neural network. The model is trained through 70
epochs to reduce the difference between the output value of the LSTM M’ and
the original value of this parameter M, which was used to calculate the value
of the corresponding energy in preparing the training data phase. The training
process was performed on the Nvidia Tesla V100-SXM2-32GB2.This process was
run once for each value of the L parameter and this took around ten hours.

! https://scikit-learn.org/
2 https://www.nvidia.com /en-us/data-center/v100/
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Test process. The optimal solution of the LABS problem should have the min-
imum possible value of energy. Thereby, during the test phase, for each randomly
generated test sequence, in place of real value of the energy (as occurred in the
training phase), we put the smallest possible value of the energy that can be
achieved, which after normalisation is equal to -1. As was the case in the train-
ing phase, this value of energy is copied L times to the input vector. As a result,
the neural network returns value of the M’ which allows obtaining the smallest
possible value of the energy for an given input sequence. The input sequence
with predicted M’ value is given as a input for the Tabu calculation module and
the final energy is returned (Fig. 1).

Input

s h ' ( N
0.-1, 1,..,1,Ey, Ez, .., Ei] — M, TABU Ereal
— - LSTM — (only during the test| |:‘ >
L L > phase)
— -
Etraining e[1,1] et
Etest = -1

Fig. 1: Training and test phase of TABU with LSTM

4 Effectiveness of the proposed algorithms

In order to measure the effectiveness of the proposed solution, energies from the
version of Tabu with a trained LSTM neural network, are compared with the
basic version of the Tabu search which was implemented in the Python language.
In the original Tabu, the number of banned steps M, is determined as a sum of
two factors: minTabu and extraTabu (Alg. 1, line 19). In our experiments, the
value of the maxlter parameter was set based on promising results which was
achieved in our previous work [12] and it is set to 128. Consequently, the value
of the M parameters in the reference version of Tabu search is between [13, 16].

Each algorithm was seeking the optimal solution for three different input
lengths (128, 192, 256). In a single test, 512 random sequences are generated for
which the Tabu calculations are run in both scenarios: i) base Tabu search, ii)
tabu search with support of LSTM, where M parameter is prompted though the
use of the neural network. The entire process was run 10 times, so consequently,
512x10 random sequences were tested for each value of parameter L.

Figure 2 demonstrates the mean value of energies from 10 independent runs
after each iteration. As could be observed for each size of the problem, the best
solution was obtained by the Tabu which was supported by the neural network.
Moreover, with this solution for all test data, it was possible to find the lowest
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Fig. 2: Energies achieved by basic Tabu search and Tabu search with the LSTM
neural network for the different value of L parameter

value of the energy for all used sequence lengths, which is presented in Table
1. The test time is almost the same for both solutions and it equals 19’ when
L=128, 45’ or 46’ when L=192 and 77 or 79’ for L=256, where longer time is

always needed for the solution with LSTM but this difference is marginal.

Table 1: Min and average value during 10 runs through 512 iterations

Sequence Min |Average|Sequence Min |Average
Lenght Method Value Valuge Lenght Method Value Valui
128 TABU | 1484 | 1555.48 128 TABU with LSTM| 1444 | 1539.80
192 TABU | 3432 | 3567.54 192 TABU with LSTM| 3284 | 3567.54
256 TABU | 6372 | 6595.80 256 TABU with LSTM| 6180 | 6518.98

5 Conclusions and further work

The presented paper is the latest of our research related to finding an efficient
approach to resolving the LABS problem. The presented work, as our first step
of combining a neural network with local optimisation heuristics for hard dis-
crete problems, shows that incorporating deep learning models for predicting the
internal parameters of a Tabu search significantly improves the final results from
our attempt to solve the LABS problem. It is also worth mentioning that the
computational overhead caused by the additional step of the prediction of the M
parameter is almost negligible. The presented method seems to be very promis-
ing and allows us to identify a few further lines of research such as improvement
of the LSTM architecture and its topological impact on parameters relating to
prediction efficiency, applying the concept to other local search techniques and
the optimisation of the developed algorithms with GPGPU.
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