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Abstract. In the field of optimization, NP-Hard problems play an im-
portant role concerning its real-world applications, such as resource al-
location, scheduling, planning, logistics, etc. In this paper, we propose a
heuristic search algorithm based on Montecarlo along with a clustering
strategy that analyzes density and performs k-means partitions to solve
the classic binary Knapsack Problem (KP01). Our heuristic method,
which was designed to solve combinatorial optimization problems, has
evolved and can adapt to other optimization problems, such as the KP01
that can be organized in an n-Dimensional search space. Regarding the
methodology, we substantially reduced the search space while the areas
of interest were located in the clustering stage, which brings us closer
to the best solutions. After the experiments, we obtained a high-quality
solution, which resulted in an average success rate of above 90%.
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1 Introduction

In optimization, we set the objectives when looking for the best possible con-
figuration of a set of variables. We can deal with these problems by discretizing
the variables or taking the real values. Thus, each optimization problem is spec-
ified by defining the possible solutions (or states) and a general objective. The
classical optimization paradigm is understood as to how the solution identifies
by enumeration or differential calculus, the existence of an assumed (unique)
solution, or the convergence of classical optimization methods for the solution
of the corresponding first-order conditions.

Probabilistic distribution methods such as Montecarlo offer flexible forms
of approximation, with some advantages regarding cost. In this sense, meta-
heuristics are high-level algorithms that are capable of determining a sufficiently
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satisfactory (almost optimal) solution for an approximate optimization problem,
while other approaches use similarity.

We propose a heuristic algorithm that works in conjunction with clustering
techniques based on [1]. The Montecarlo K-Means (MCKM) method was im-
proved and evaluated with the optimization benchmark functions [4], which are
high-Dimensional problems in a large search space. In all the benchmark cases
analyzed, we came up with the improved heuristic Montecarlo Density K-Means
(MCDKM), obtaining promising results comparable with those in the literature.

For this paper, our proposal goes a step further in solving different types of
combinatorial optimization problems where search processes are involved. We
have selected the Knapsack Problem (KP), which seeks to maximize the profits
provided by a selection of elements to enter a Knapsack. The objective function
would be defined as the total profit of the selected objects. KP is a classic com-
binatorial optimization problem with various applications in different industries,
such as resource allocation, tasks, resource management/scheduling, or energy
allocation management. KP is also part of a historical list of NP-Complete prob-
lems elaborated by Richard Karp [5].

Martello [8], on the background of this classic NP-Hard problem, offers an
extensive review of the many effective heuristics to solve the KP. For example,
a population-based approach such as incremental learning algorithm based on a
greedy strategy in [7]. In addition, other different heuristic techniques, such as
[9][6][3]are proposed to provide an acceptable solution to this problem.

Regarding the contribution of our heuristic method MCDKM, it has been
validated that it can find feasible solutions. In the methodology, we will see how
the partitions in n-dimensions of the search space may reduce the ordering times
of the axes. The results section compares the solution quality found when varying
the Dimensional arrays that organize the data, ranging from bi-dimensional to
more than 50-dimension arrangement.

The paper organizes as follows. Section 2 describes the MCDKM heuristic
method. Section 3 introduces the Knapsack problem into the MCDKM method,
Section 4 details the implementation and the results, and finally, Section 5
presents the conclusions and future work.

2 Description of the MCDKM Heuristic Method.

MCKM heuristic method[1] was initially developed to solve a particular com-
binatorial optimization problem. Our proposal goes a step further by adding a
previous step. This is, we prepare the problem by parameterizing it and orga-
nizing the search in an n-dimensional space. Furthermore, we also perform a
density analysis of the generated map. Bringing the problem into our parame-
ters will contribute to the solution’s efficiency since, first, the search space can
be significantly reduced. Second, the ordering times of the axes are improved,
even when sorting them in a more significant number of dimensions. All this
finally translates into a general improvement that contributes to increasing the
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Fig. 1. Flowchart showing the redesigned MCKM heuristic algorithm, highlighting its
stages and showing benchmarks as a solution example.

quality of the solution and a good ratio between the size of the problem and the
analyzed sample.

The procedure is shown in detail in Fig. 1. First, with Montecarlo, we gen-
erated a uniform sample that formed a map that is distributed through the
whole search space. Then, the sample is reduced through the density analysis
(for which we use the DBScan[2] algorithm), sweeping data to discard the sam-
ple that is not worth analyzing while keeping the remaining areas to perform
another clustering process. Such clustering is made with k-means, which is now
able to correctly partition the sample to group the feasible solutions into clusters
for its selection.

The now more robust MCDKM heuristic method was able to find the best
solution values, which turned out to be very similar and comparable to the
optimum solution of the benchmark functions. The success rate was between
97% and 99%, as seen in the results from [4].

3 The Knapsack Problem into the MCDKM Method

We are bringing the Knapsack Problem KP01 into our heuristic method to
find a comparable efficient solution. This combinatorial optimization problem
is sometimes exemplified as: the objective is for a supposed person to choose
the elements that will allow him to maximize the benefit without exceeding the
allowed capacity of a Knapsack. The problem can be stated as a problem of
vectors X = (x1, x2, x3, ...xn), which have components of zeros and ones, shown
in Eq. 1, and have at most the restriction of the objective function Z(x), as seen
in Eq. 2. Mathematically, we have the following:

W (x) =
∑n

i=1 xiwi ≤ W (Eq.1) Z (x) =
∑n

i=1 xipi(Eq.2)

Where W denotes the maximum capacity of the backpack, x would be the
elements whose index numbering can vary from 1 to n. Concerning wi and pi
they represent the weight and value of the i element, meaning that the sum of
the weights must not exceed the knapsack capacity, which is W. Now, Z(x) is
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Table 1. Dataset EX01: Knapsack capacity (W) = 6,404,180 and profit (P) =
13,549,094 elements n(i)=24

Dimensional array for the Knapsack EX01 Problem
ID element (n) 1 2 3 4 5 6 7 8 9 10 11 12
weight (i) 382,745 799,601 909,247 729,069 467,902 44,328 34,610 698,150 823,460 903,959 853,665 551,830
profit (i) 825,594 1,677,009 1,676,628 1,523,970 943,972 97,426 69,666 1,296,457 1,679,693 1,902,996 1,844,992 1,049,289
2-Dimensional 1st dim
3-Dimensional 1st dim 2nd dim
4-Dimensional 1st dim 2nd dim
6-Dimensional 1st dim 2nd dim 3rd dim
8-Dimensional 1st dim 2nd dim 3rd dim 4th dim
12-Dimensional 1st dim 2nd dim 3rd dim 4th dim 5th dim 6th dim
24-Dimensional 1st dim 2nd dim 3rd dim 4th dim 5th dim 6th dim 7th dim 8th dim 9th dim 10th dim 11th dim 12th dim

ID element (n) 13 14 15 16 17 18 19 20 21 22 23 24
weight (i) 610,856 670,702 488,960 951,111 323,046 446,298 931,161 31,385 496,951 264,724 224,916 169,684
profit (i) 1,252,836 1,319,836 953,277 2,067,538 675,367 853,655 1,826,027 65,731 901,489 577,243 466,257 369,261
2-Dimensional 2nd dim
3-Dimensional 2nd dim 3rd dim
4-Dimensional 3rd dim 4th dim
6-Dimensional 4th dim 5th dim 6th dim
8-Dimensional 5th dim 6th dim 7th dim 8th dim
12-Dimensional 7th dim 8th dim 9th dim 10th dim 11th dim 12th dim
24-Dimensional 13th dim 14th dim 15th dim 16th dim 17th dim 18th dim 19th dim 20th dim 21th dim 22th dim 23th dim 24th dim

the objective function (maximize or minimize). In addition, a vector x in Eq. 2
that meets the constraint W is feasible if we have a maximum result in Z(x).

Analyzing these statements is one of the essential steps in the methodology
to adapt the parameters. First, we find the relationship between the variables to
sort the data into a Montecarlo map.

Since this KP modality is a decision problem, our strategy considers the
elements as belonging to different dimensions. This is, we divide the search
space into multiple dimensions distributing the elements among them, and sub-
sequently ordering according to all the possible combinations between them and
identifying them with an ID.

We selected two available open-source datasets, EX01 from Kreher and Stin-
son which was checked with a branch and bound (B&B) algorithm. EX02 is a
dataset available in the ORLibrary. EX03 dataset was based on EX01.

Table 1 shows a Dimensional array we designed for EX01. As seen, for a 2-D
search space, 12 elements will be placed in each dimension, and the ordering
is made out of all the possible combinations between these 12 elements. In the
case of a 24-D search space, each element belongs to a dimension. Ordering the
elements should be more efficient, which could be taken as an advantage in terms
of resource use.

Table 2. Detail of the possible combinations (C) in the 1st-dim. of an 8-dim array.

Combinations (Cn) Elements Weight

Id Binary
representation Element 1 2 3 Weight

Combination
Profit

Combination
C0 000 - - - - - 0
C1 001 1 382,745 - - 382,745 825,594
C2 010 2 - 799,601 - 799,601 1,677,009
C3 011 1,2 382,745 799,601 - 1,182,346 2,502,603
C4 100 3 909,247 - - 909,247 1,676,628
C5 101 1,3 382,745 - 909,247 1,291,992 2,502,222
C6 110 2,3 - 799,601 909,247 1,708,848 3,353,637
C7 111 1,2,3 382,745 799,601 909,247 2,091,593 4,179,231
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Fig. 2. Establishing a Montecarlo index for each combination in every dimension. Every
sample fulfills the restriction in an 8-Dimensional search space.

Table 3. Solution found by the heuristic method for a 8-Dimensional search space.

Combination Elements Weight

Dimension Id Binary
representation Elements 1 2 3 Weight

Combination
Profit

Combination
1 C3 011 1,2 382,745 799,601 - 1,182,346 2,502,603
2 C5 101 4,6 729,069 - 44,328 773,397 1,621,396
3 C4 001 9 823,460 - - 823,460 1,679,693
4 C3 011 10,11 903,959 853,665 - 1,757,624 3,747,988
5 C2 010 14 - 670,702 - 670,702 1,319,836
6 C1 001 16 951,111 - - 951,111 2,067,538
7 C0 000 - - - - 0 0
8 C2 100 23 - - 224,916 224,916 466,257

Total Weight 6,383,556
Total Profit 13,405,311

The Montecarlo map generates by crossing data between the combinations
of the elements, which must not exceed the restriction (Eq. 1) or the value is
rejected. The uniform map is formed with the samples that meet the weight
constraint. The binary code serves as a coordinate representation of such com-
binations since there are only two possible states. Each digit position represents
whether an element will be packed or not, so we know what elements are within
each coordinate. Afterward, ordering the axes is carried out in ascending order
of best profit. In Table 2 we show how ordering a dimension takes place.

In Figure 2, we illustrate how we define the map by establishing a Montecarlo
index and referring to the position of each combination of elements in each
dimension, which returns an integer when generating random samples.

After creating the Montecarlo map, we seek to reduce the search space. Now,
the density clustering algorithm can be applied directly to this map, but it has
to be adjusted to work efficiently.

We make such adjustment by cutting the map along the objective function
axis. Cutting the map helps improve the clustering, and we can avoid analyzing
the complete map. Sweeping of the data must occur, and then the stopping
criterion is activated when more than 1 cluster is found. We aim for the largest
number of clusters since it interprets as many feasible areas. Now, the rest of
the sample can be discarded, narrowing the search space.

The results are detailed in Table 3, where the list of combinations found by
the heuristic results in a MaxProfit (P) = 13,405,311 fulfilling the restriction
since the sum of the weight (W) = 6,383,556.
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Table 4. Shows the results for the EX01, EX02 and EX03.

Problem # of
Dimensions

Time
(sec) Problem size Axis Sort

Time (sec) # Samples Max Profit
Result

Weight
Result

EX01 - Knapsack capacity = 2 0.694 1.676E+07 0.0992 1,727 13,463,657 6,403,149
6,404,163 n = 24 4 0.538 1.676E+07 0.0030 1,644 13,461,329 6,402,653
Fitness = 1E-01 6 0.995 1.676E+07 0.0011 3,147 13,437,475 6,375,863
Optimal Profit (P) = 13,549,094 8 2.322 1.676E+07 0.0009 7,004 13,436,707 6,399,256
with a weight (w) = 6,402,560 12 2.048 1.676E+07 0.0006 4,429 13,385,615 6,389,719
Time required = 1.2 sec. 24 0.432 1.676E+07 0.0010 146 13,300,418 6,392,566
EX02 - Knapsack capacity =
850 n = 50 2 1,277.291 1.125E+15 1276.6851 2,084 6,242 805

Fitness = 1E-01 5 2.043 1.125E+15 0.0489 1,417 6,643 818
Optimal Profit (P) = 7,534 10 2.616 1.125E+15 0.0023 2,856 6,962 810
with a weight (w) = 850 25 3.903 1.125E+15 0.0016 5,044 6,233 849
Time required = 0.9 sec. 50 0.822 1.125E+15 0.0011 524 6,445 772
EX03- Synthetic Knapsack
capacity = 64,041,630 n = 240 20 3.302 1.766E+72 1.1231 557 130,279,429 63,791,741

Fitness = 1E-01 30 2.127 1.766E+72 0.0868 1,622 130,589,231 63,981,629
Optimal Profit = 135,789,553 40 1.088 1.766E+72 0.0226 899 130,448,449 63,941,709
with a weight (w) = 64,041,800 48 1.873 1.766E+72 0.0162 1,148 130,824,332 63,923,428
Time Required = 13,057.79 Sec. 60 5.010 1.766E+72 0.0089 3,170 130,805,991 63,987,106

80 0.469 1.766E+72 0.0081 172 130,011,304 63,741,250

4 Implementation and Empirical Results

The headers of Table 4 detail the best solutions found for each data-set of the
Knapsack Problem, such as the capacity (W), the number of elements (n), the
fitness used, and the Optimal Profit (P), obtained with a branch and bound
(B&B) algorithm. The rest of the Table represents the best results obtained by
the MCDKM heuristic out of 30 executions for each space partition.

As expected, as the number of dimensions increased, the Axis sort time de-
creased when it required fewer elements, thus decreasing the total time until
finding a solution. Therefore, it can be considered an advantage against other
types of search algorithms capable of finding the optimal but entailing a high
computational cost (like B&B). Also, as seen in Table 4, we emphasize the ra-
tio between the number of samples and the size problem. As a result, the total
samples needed to find an efficient solution was less than 1% in all cases.

Regarding EX03, we increased the complexity to compare us with other algo-
rithms. In this case, we used branch and bound. We verified that, as the complex-
ity of the problem increases, the execution time might also increase, influencing
the prediction quality. Nevertheless, the solution maintained a prediction quality
above 95% in less than 1 sec. (when partitioned into 80 dimensions). In contrast,
the execution time was considerably longer even though the branch and bound
algorithm obtained the optimal solution.

Therefore, heuristic search methods, especially ours that perform stochastic
optimization, provide a good way to solve large combinatorial problems and offer
a high-quality solution.

5 Conclusions and Future Work

The Knapsack Problem was entirely adapted and brought into our parameters.
As a result, we found an efficient solution and achieved better results in the
execution time when we increased the no. of partitions of the search space.
Furthermore, we significantly reduced the number of samples needed to reach
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the best solutions compared to the full sample (which is the problem size) in all
cases. Space ordering and sorting is an essential step in the methodology.

As we present in this paper, the MCDKM heuristic search algorithm proved
some of its advantages, such as its applicability in combinatorial optimization
problems. The MCDKM method has the potential to solve any KP01 using an n-
Dimensional search space approach obtaining an efficient, high-quality solution
with a success rate above 90% average. Solving the KP01, grants MCDKM the
capability to deal with a range of other combinatorial optimization problems,
such as resource allocation, production scheduling, distribution processes, etc.

Our heuristic model is constantly improving and considering more factors,
for example, the relationship among multiple items. In addition, our model is
expected to solve multi-objective and multi-Dimensional optimization problems.
We believe that parallelization of the method would provide a fast convergence
with the improvement in the execution times.
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