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Abstract. The multigrid reduction in time (MGRIT) method is one of
the parallel-in-time approaches for time-dependent PDEs and typically
uses rediscretized coarse-grid operators. As their convergence struggle
with hyperbolic problems, an optimization method for coarse-grid oper-
ators has been proposed to deal with these problems. This method im-
proves convergence using coarse-grid operators with a slightly increased
number of nonzero elements. However, it is more desirable for coarse-
grid operators to be cheaper than fine-grid operators, and there is room
for improvement in terms of parallel implementation. This work com-
bines the spatial redistribution technique for MGRIT, which accelerates
coarse-grid solvers using agglomerated idle processors, with the above
optimization method. This combination attempts to achieve better scal-
ing performance while maintaining good convergence. Numerical experi-
ments demonstrate a 23% runtime reduction at most among the various
assignments tried with specific amount of parallelism.

Keywords: parallel-in-time approaches · multigrid methods · coarse-
grid optimization · spatial redistribution

1 Introduction

This paper considers parallel numerical solvers for time-dependent partial differ-
ential equations (PDEs). In modern computing systems with increasing number
of cores, spatial parallelism obtained by domain decomposition methods is ex-
hausted because of over-decomposition. Therefore, attempts to extract temporal
parallelism, called parallel-in-time approaches [4, 6], have attracted much atten-
tion recently. Some examples of the most powerful parallel-in-time solvers are
space-time multigrid, Parareal, and multigrid reduction in time (MGRIT) [3].
This paper focuses on MGRIT. While the application of MGRIT has been suc-
cessful for various parabolic problems, the convergence of MGRIT struggles with
hyperbolic problems [1, 5]. This failure can occur even with implicit time dis-
cretization or spatial coarsening to stabilize the coarse-grid problem.

De Sterck et al. firstly identified that the convergence deterioration was due
to rediscretized coarse-grid operators and proposed an optimization method for
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coarse-grid operators for linear advection problems [1]. This optimization method
constructs coarse-grid operators with a realistic number of nonzero elements that
minimizes the spectral difference from the ideal operator, dramatically improv-
ing the convergence of MGRIT. However, it should be noted that the cost of
operators increases from fine- to coarse- level, it is not negligible as mentioned
below in terms of parallel performance; because when running at high temporal
parallelism, the percentage of coarse-level operations increases, and the overhead
is not negligible. Thus, there is room for improvement of the parallel implemen-
tation here.

The aim of this paper is to accelerate MGRIT with optimized coarse-grid op-
erators using the spatial redistribution technique [7]. This technique accelerates
the coarse-level solvers by assigning temporal agglomerated idle processors to
redistributed spatial domains and reduces the overhead. Hence, the novel com-
bination of these existing methods is expected to offset the increased cost of
operators optimized for improved convergence.

2 Multigrid Reduction in Time

First, we consider sequential time-stepping for linear time-dependent PDEs. Let
Nx be the number of spatial grid points and Nt be the number of time steps.
We assume that the spatial and temporal discretized governing equations have
the relation: ui+1 = Φui + gi+1, where u and g denote the unknown and force
vector, respectively, and the temporal index i ranges from 0 to Nt − 1. The
time-stepping proceeds sequentially Nt times according to the above relation.

Multigrid reduction in time (MGRIT) [3] is an all-at-once approach that
extracts time parallelism by solving all time steps at once. It yields the linear
space-time system on the temporal fine-grid based on the time-stepping method:

Au =


I
−Φ I

. . .
. . .

−Φ I




u0

u1

...
uNt−1

 =


g0

g1

...
gNt−1

 = g, (1)

where Φ is called a fine-grid operator. MGRIT uses relaxations in parallel by
delimiting the time dependency based on C-points and F-points. C-points cor-
respond to each m-th time-step, m is called a coarsening factor, and the others
are labeled F-points. F- or C-relaxation perform the time-stepping method at
F-points or C-points only, respectively. FCF-relaxation also performs F-, C-, and
F-relaxations in that order.

MGRIT also constructs a coarse-grid system similar to Eq. 1 with Nt/m time
steps and a coarse-grid operator Ψ . The restriction and prolongation operators,
which transfer between fine and coarse grids, are defined as injections on C-
points. In general, we obtain Ψ with a rediscretization approach that enlarges the
time-step width ∆t by a m factor. On the other hand, Ψ can also be obtained by
an optimization method [1], which minimizes the spectral difference from optimal
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Table 1: Convergence rates of MGRIT with various numbers of nonzero elements
for one-dimensional advection problem with Nx = 28, Nt = 29 and nnz(φ̃) = 10.

m = 2 m = 4 m = 8 m = 16 m = 32

nnz(φ̃m) 19 36 60 89 105

ν = 10 0.092 0.119 0.190 0.469 1.233
ν = 11 0.088 0.166 0.362 0.610
ν = 12 0.157 0.227 0.388
ν = 13 0.085 0.226 0.362
ν = 14 0.183 0.307
ν = 15 0.105 0.311
ν = 16 0.073 0.232

operators. Here we briefly it introduce according to the notation of [1]. Let λ be
the eigenvalues of fine-grid operators Φ and let µ be the eigenvalues of coarse-grid
operators. Assuming periodic boundary conditions for spatial domains, using
the first columns of each operator and the DFT matrix F ∈ CNx×Nx , we can
compute the eigenvalues λm = F φ̃m and µ = Fψ for Φm and Ψ , respectively.
Based on this computation, the optimization problem for coarse-grid operators
is formulated by

ψ := argmin
ψ̂∈Rν

∥∥∥W 1/2
λ F

(
φ̃m −RT ψ̂

)∥∥∥2
2
, (2)

where Wλ = diag(w(|λk|)) is a weighting matrix, and k = 0, . . . , Nx − 1 denotes
the spatial index. We adopt w(z) = 1/(1 − z + ε)2 as weight function, where
ε = 10−6. The operator R ∈ Rν×Nx constrains sparsity to obtain practical
coarse-grid operators with ν � Nx. By solving the normal equation of Eq. 2, we
obtain the solution ψ and construct the optimized coarse-grid operator Ψ .

Finally, we briefly review the convergence improvement of the optimization
approach for a one-dimensional linear advection problem based on the experi-
ment in Fig. 6 in [1]. Table 1 shows the convergence rates of MGRIT, derived
by the two-level reduction analysis [2], for the above problem with each m and
ν. We confirm that this approach provides good convergence even for hyperbolic
problems by slightly increasing ν for m. While this increase is acceptable and
practical, there is room for improvement in terms of parallel performance, which
will be addressed in the next section.

3 Spatial redistribution technique

The spatial redistribution technique [7] for MGRIT assigns temporally agglom-
erated idle processes to spatially redistributed domains, accelerating the coarse-
grid operators. Therefore, this technique decreases temporal parallelism Pt and
increases spatial parallelism Px to reduce the coarse-level spatial solver on the
coarse level. See [7] for more details.
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In this paper, we use this technique to reduce the cost of optimized coarse
grid operators. Moreover, it does not affect convergence; we improve scaling while
maintaining good convergence. Also, it offers flexibility in how processes are ag-
glomerated and reassigned, and there are no restrictions on application problems.
Therefore, in later numerical experiments, after constructing the coarse-grid op-
erators via the optimization approach, this solver is parallelized in the spatial
direction by row-wise one-dimensional block partitioning according to spatial
parallelism.

4 Numerical experiments

This section investigates the effectiveness of MGRIT with optimized coarse-grid
operators and spatial redistribution. Numerical experiments are conducted for
the one- or two-dimensional advection problems on structured grids with periodic
boundary conditions: ut − αux = 0, where (x, t) ∈ [0, 1]

d × [0, T ] and α = 1

in our experiments. The initial conditions are sin (πx)
4

or sin (πx)
4 · sin (πy)

4
,

respectively. We discretize them with third-order upwind discretization for space
and explicit third-order Runge-Kutta for time. The CFL number on the finest
level is set to 0.85 times the CFL limit, where the rediscretization approach does
not work well. The respective coefficients are based on the setup in [1].

To simplify the comparison of solvers, we use the following abbreviations:
“M1” corresponds to the MGRIT with optimized coarse-grid operators. “M2”
denotes a solver that combines the above with spatial redistribution. The con-
vergence tolerance for both solvers isthat the relative residual 2-norm becomes
less than 10−10. We evaluate each solver on the Wisteria/BDEC-01 Odyssey
supercomputer system equipped with 2.2GHz Fujitsu A64FX, which has 12×4
cores. We implement flat MPI and MPI/OpenMP modes for each solver using
Fujitsu compiler and MPI v4.7.0. In the latter mode, the number of threads Tx is
fixed to 12, considering A64FX architecture. The runtime is the minimum value
of three measurements.

The first experiment is a one-dimensional problem with Nx = 215, Nt = 214,
T = 5.528, and flat MPI mode. Both MGRITs use L = 6 levels with the coars-
ening factor m = 4. Fig. 1 shows the strong scaling results. Both figures include
the same results of the sequential time-stepping solver, and we can see it reduces
the runtime up to Px = 1, 024. However, it stagnates at Px = 4, 096 and indi-
cates the exhaustion of spatial parallelism. Next, we move on to M1 on the left
and M2 on the right. Both MGRITs converged after only four iterations for this
problem. These optimization approaches showed good convergence while the re-
discretization approach diverged (not shown in the figure). The scaling tests fix
the spatial parallelism Px from 1 to 256 and increase the temporal parallelism
Pt. We can see from the left figure that while M1 scales well at small temporal
parallelism, the improvement degrades as the temporal parallelism approaches
4,096, the maximum. The reason is that as temporal parallelism increases, the
coarse levels occupy a larger proportion of the total runtime, and these levels use
optimized coarse-grid operators that are slightly more expensive than the finest
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Fig. 1: Strong scaling experiment for one-dimensional advection problem with
Nx = 215, Nt = 214, L = 6, and M = 6. Each color depends on the spatial
parallelism specified at the finest level. “M1”: MGRIT with optimized coarse-
grid operators and “M2” with these and spatial redistribution.

grid. In contrast, M2 scales well without stagnation, even at high parallelism.
This good scaling is achieved by accelerating the optimized coarse-grid opera-
tors. In order to see the improvement of M2 in more detail, we use a runtime
breakdown of the fastest case with Px = 64 and Pt = 1, 024 in Fig. 2. This
figure compares the runtime of M1 and M2 at each level, decomposing it into
four representative operations: sparse matrix-vector (SpMV), vector operations,
communication in space, and communication in time. In the SpMV part, we can
see that the runtime increases as the level increases, except for L = 0, which
contains the convergence check part. This increase directly corresponds to an
increase in the number of nonzero elements in optimized coarse-grid operators.
Since there is no temporal agglomeration and spatial redistribution on L = 0
and 1 for Pt and Nt in this problem, there is no significant difference in the
runtime of the two solvers on these levels. After L = 2, M2 reduces the SpMV
and vector operation parts due to the spatial redistribution. This solver also
increases communication to some extent on coarse levels due to the increased
spatial parallelism, but it is negligibly small.

Finally, we confirm the different parallelism assignments of each fastest case
at maximum nodes 1, 366 nodes in Fig. 1: M1 with Px = 256 and Pt = 256
and M2 with Px = 64 and Pt = 1, 024. Comparing the two, M2 achieves a 23%
runtime reduction over M1. The M2 parallelism assignment decreases the spatial
parallelism and increases the temporal parallelism, compared to the fastest case
of M1. A similar trend can be observed for smaller nodes. We believe this is
because we can simultaneously benefit from the high temporal parallelism of
MGRIT and the coarse-level overhead reduction due to spatial redistribution.

The second experiment is the two-dimensional problem with N2
x = (29)

2
,

Nt = 210, T = 2.764, and hybrid mode. The spatial direction is parallelized
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Fig. 2: Runtime breakdown with Px = 64 and Pt = 1, 024 at 1366 nodes in Fig. 1.

using a hybrid MPI/OpenMP approach with a fixed number of threads Tx = 12,
and the temporal direction is parallelized using MPI only. We set L = 4 and
m = 4 for both MGRITs. In the two-dimensional case, we obtained similar
results as in the previous section. Fig. 3 shows the stagnation of time-stepping
and M1 at high parallelism and the well-scaling of M2. Focusing on the results
at 1,024 nodes, we compare both MGRITs’ performance. M2 with Px = 16,
Pt = 256, Tx = 12 achieves a 17% improvement compared to M1 with Px = 64,
Pt = 64, Tx = 12.

12(1n)
48(1n)

192(4n)
768(16n)

3072(64n)

12288(256n)

49152
(1024n)

Number of parallelism

10 1

100

101

Ru
n 

tim
es

 [s
ec

on
ds

]

MGRIT with optimized coarse-grid operators
Time-stepping Tx=12
M1 (Px=4, Tx=12)
M1 (Px=16, Tx=12)
M1 (Px=64, Tx=12)

12(1n)
48(1n)

192(4n)
768(16n)

3072(64n)

12288(256n)

49152
(1024n)

Number of parallelism

MGRIT with optimized and redistributed coarse-grid operators
Time-stepping Tx=12
M2 (Px=4, Tx=12)
M2 (Px=16, Tx=12)
M2 (Px=64, Tx=12)

Fig. 3: Strong scaling experiment for two-dimensional advection problem with

N2
x = (29)

2
, Nt = 210, L = 4, M = 4, and Tx = 12. “M1”: MGRIT with

optimized coarse-grid operators and “M2” with these and spatial redistribution.

5 Conclusion

This paper accelerated MGRIT with optimized coarse-grid operators by the
spatial redistribution technique. These operators provide good convergence for
one- or two-dimensional advection problems, even for explicit discretizations.
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On the other hand, the overhead of increasing the number of nonzero elements
hinders scaling when coarse-level solvers occupy a large proportion at high tem-
poral parallelism. The spatial redistribution reduces this overhead to achieve a
good convergence and a scalable solver, using agglomerated idle processes on
coarse levels. Our numerical experiments show a 23% improvement for the one-
dimensional problem and a 17% improvement for the two-dimensional problem
compared with the fastest parallelism assignment.

In numerical experiments on a two-dimensional problem, we evaluate a hybrid
MPI/OpenMP implementation with a fixed number of threads. However, given
that the cost of coarse-grid operators varies with the optimization approach and
spatial parallelism changes with the spatial redistribution, the optimal configu-
ration of the number of processes and threads will be different. Future work will
investigate them as they vary on the coarse level.

Our approach can tolerate some increase in the cost of optimized coarse-
level operators. Ideally, if coarse-grid operators are accelerated by m times, a
coarsening factor of MGRIT, then an increase in the cost of m times is accept-
able for an optimization method. The present optimization process is performed
sequentially and constructs coarse-grid operators. However, for example, an op-
timization method is an option that does not dramatically improve convergence
but has sufficient parallelism at the construction stage. We believe that this
strategy may lead to new coarse-grid operator optimization methods.
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