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Abstract. 5G networks offer novel communication infrastructure for Internet 
of Things applications, especially for healthcare applications. There, edge com-
puting enabled Internet of Medical Things provides online patient status moni-
toring. In this contribution, a Chicken Swarm Optimization algorithm, based on 
Energy Efficient Multi-objective clustering is applied in an IoMT system. An 
effective fitness function is designed for cluster head selection. In a simulated 
environment, performance of proposed scheme is evaluated. 
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1 Introduction 

Within Internet of Things (IoT), availability of 5G networks empowers raise of Internet 
of Everything [1,2]. IoT materializes also in healthcare, and is often referred to as In-
ternet of Medical Things (IoMT) [3,4]. Typically, IoMT systems are linked with wire-
less body area networks (WBAN) connecting biosensor nodes [5], which act like a per-
sonal digital assistant ([6, 7]). However, if the energy in the biosensor is exhausted, the 
WBAN collapses [8, 9]. Note that biosensor replacement is very difficult, when it is 
placed inside the patient [10]. Here, energy-efficient clustering protocols are to achieve 
effective cluster head selection [11, 12]. However, existing energy-aware clustering and 
routing schemes suffer from network overhead [13, 14]. Separately, fuzzy control based 
energy efficient clustering protocol [15] still lacks in energy consumption. Moreover, 
heterogeneity based energy aware clustering protocols have been designed in [16, 17]. 
The key contribution of this work is to propose a clustering approach, which offers 
energy-aware communication in 5G enabled, edge-based ecosystems. Here, IoMT de-
ployment consists of resource-limited wearable sensors (SNs), which transmit data 
through a 5G-enabled base station (BS). Transmission and reception of data takes more 
power. Hence, to maximize lifespan of system, a multi objective cluster head (CH) se-
lection, based on Chicken Swarm Optimization (CSO), is used for cluster formation.  
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2 System model and assumptions 

In this work it is assumed that uniform level of energy is allocated to all wearable SNs 
and energy needed to perform intra-cluster communication is represented by an arbi-
trary value, within the pre-determined range (including “sleeping mode”). Network 
lifespan is reduced when SN battery is drained. Hence, energy-efficiency has to be 
taken into account when electing the CH, amid the accessible SNs. The model of the 
system illustrating the proposed clustering scheme is depicted in Fig. 1.  
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Fig. 1. Proposed Clustering Scheme System Model Framework 

In what follows, the energy model, found in [18], has been selected. The equation 
for calculating energy consumption of data packet of size 𝑠 bits for distance (𝑑) is 
𝐸்௥௔௡௦(𝑑) = (𝑇𝐴ிௌ𝑑ఈ + 𝐸஽)𝑠. 𝐸஽ denotes energy consumption of a device, 𝑇𝐴ிௌ is 
the free space model amplifier of a transmitter, and 𝛼 denotes the path loss exponents, 
with 2 ≤ 𝛼 ≤ 4. Energy use to obtain data packet is represented by 𝐸ோ௘௖(𝑑) = 𝑠 × 𝐸஽ . 
The cumulative energy use, of each wearable SN (to send or receive data), is based on 
distance 𝑑, and represented as 𝐸஼௨௠ = {(𝑇𝐴)𝑑ఈ + 2(𝐸஽)}𝑠. Selection of cluster head 
relies on the objective function. Here, selection of energy efficient CH depends on re-
sidual energy, queuing delay, communication cost, link quality and node centrality. 
Residual Energy: Initially, wearable SNs, deployed inside the IoMT, gather sensitive 
patient data and forward it to the CH. Energy consumption of CHs, during data gather-
ing from SNs, is:  

𝐸஼ுିௌே = 𝐷஻ × ቀ𝐸௉஻ಷ
+ 𝐴𝐸௉஻ × ൫ඥ(𝑎஼ு − 𝑎ௌே)ଶ + (𝑏஼ு − 𝑏ௌே)ଶ൯ቁ,  

where (𝑎஼ு , 𝑏஼ு) is the position of CH and (𝑎ௌே , 𝑏ௌே) is the position of SN; 𝐷஻ is the 
number of bits in the data packet, 𝐸௉஻ಷ

 is the energy needed, per bit, for data forward-
ing, and 𝐴𝐸௉஻is the amplification energy. Data forwarding from CH to BS can be com-

puted as follows: 𝐸஻ௌି஼ு = 𝐷஻ × ቆ𝐸௉஻ಷ
ቀ

ே

௒
− 1ቁ + ൬𝐸௉஻ಸ

× ቀ
ே

௒
ቁ൰ + 𝐸௉஻ಷ

+ 𝐴𝐸௉஻ ×

൫ඥ(𝑎஻ௌ − 𝑎஼ு)ଶ + (𝑏஻ௌ − 𝑏஼ு)ଶ൯ቇ, where (𝑎஻ௌ − 𝑏஻ௌ) is the position of BS, 𝐸௉஻ಷ
 is 

the energy used for data forwarding, N is the total number of SNs in the IoMT system, 

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_23

https://dx.doi.org/10.1007/978-3-031-08754-7_23


3 

Y denotes the number of SNs in the cluster. Finally, the cumulative energy consumption 

of each cluster is computed as: 𝐸஼ = 𝐸஻ௌି஼ு + ൬ቀ
ே

௒
ቁ − 1൰ × 𝐸஼ுି . 

Communication Cost: Commination cost is defined as the power needed for data for-

warding: 𝐶𝑜𝑚஼ =
ௗೌೡ೒

మ

ௗబ
మ , where 𝑑௔௩௚ denotes the average distance between given SN 

and its neighbor SNs, and 𝑑଴ represents the forwarding radius of an SN.  
Queuing Delay: 𝐷ொ௨௘ , depends on the rate of arrival of packets (to SN), and the out-
ward link forwarding capacity. For 𝐴ோ, the arrival rate of packets 𝑃௜  to the SN and 𝐹஼  the 
forwarding capacity, the queuing delay 𝐷ொ௨௘  becomes: 𝐷ொ௨௘ = (𝐴ோ + 𝐹஼)/𝑃௜. 
Link Quality: In IoMT, fading of a channel is highly irregular. If the receiver does not 
receive the complete signal, re-forwarding happens. This requires additional energy 

from the transmitter. Therefore, the link quality is estimated as: 𝐿𝑄 =
௅ொ೔ି௅ொ೘೔೙

௅ொ೘ೌೣି௅ொ೘೔೙
, 

where 𝐿𝑄௠௔௫ and 𝐿𝑄௠௜௡ denote upper and lower range of re-forwarding; and 𝐿𝑄௜  rep-
resents entire re‐transmission cost among neighbors and given (i-th) SN.  
Node centrality: Node centrality measure 𝑖 determines number of times a node acts as 

a link on the shortest paths among two nodes. It is computed as: 𝑁஼ = ∑
ఒ೘೙(೔)

ఒ೘೙
௠ஷ௥ஷ௡∈ோ , 

where 𝜆௠௡ is the number of shortest paths between node 𝑚 and 𝑛, and 𝜆௠௡(௜) is the 
number of paths via 𝑖. Here, every node follows the fitness function based on calculated 
objective function values, along with the weighted coefficients, as follows: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠௙௜௡௔௟ = 𝑤ଵ × 𝐸஼ + 𝑤ଶ × ቀ
ଵ

஼௢௠಴
ቁ + 𝑤ଷ × ൬

ଵ

஽ೂೠ೐
൰ + 𝑤ସ ×  𝐿𝑄 + 𝑤ହ × 𝑁஼. 

Here, 𝑤ଵ + 𝑤ଶ + 𝑤ଷ + 𝑤ସ + 𝑤ହ = 1 and, 0 ≤ 𝑤௜ ≤ 1, ∀𝑖, 1 ≤ 𝑖 ≤ 5. The central goal 

is to: 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠௙௜௡௔௟  
|஼ு|
௜ୀଵ such that 1 ≤ 𝑖 ≤ |𝐶𝐻| . Node, which fulfills all 

objectives will be selected as a CH. In every cluster, the selected CH is responsible for 
data gathering and forwarding to BS. Specifically, after CH selection, for each CH, 
route will be established for transferring collected data to BS. 

The proposed approach is based on the chicken swarm optimization (CSO) intro-
duced in [19] for CH selection. The most important aspects of CSO, in the considered 
problem, are as follows. 
Chicken Movement: “best node” is the rooster, “worst node” is the chick, while the 
remaining nodes are hens. Let 𝑅௡ be count of roosters, 𝐻௡ count of hens, 𝐶௡ count of 
chicks, and 𝑀௡ count of mother hens; while 𝐵 – be the number of iterations. Chicken 
positions can be denoted 𝑐௎௜,௝

௧ೌ  where 𝑖  [1,2, . . . . . . 𝑁] and 𝑗  [1,2, . . . . . . 𝐷], for time 

𝑡௔ in 𝐷 dimensional space. In the proposed approach, the rooster is the CH with optimal 
fitness value.  
Rooster Movement: Following [19], movement of roosters is computed as: 
  𝑐௎௜,௝

௧ೌାଵ
= 𝑐௎௜,௝

௧ೌ × [1 + 𝑅𝑎𝑛𝑑𝑛(0, 𝜎ଶ)]                (1)

 𝜎ଶ = ൝
1𝑖𝑓𝑓௜ ≤ 𝑓௞

𝑒𝑥𝑝 ቀ
௙ೖି௙೔

|௙೔|ାఌ
ቁ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ; 𝑘 ∈ [1, 𝑁], 𝑘 ≠ 𝑖

  

where 𝑐௎௜,௝

௧ೌାଵdepicts the movement of the rooster, 𝑅𝑎𝑛𝑑𝑛(0, 𝜎ଶ) denotes the Gaussian 

distribution, with mean value 0 and standard deviation 𝜎ଶ, 𝜀 denotes a constant value 
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added to avoid zero-division, k implies the index of the rooster, selected randomly from 
the group, and 𝑓௜ denotes the value of fitness of rooster 𝑥௜. 
Hen Movement: Following [19], hen movement is represented as: 

𝑐௎௜,௝

௧ೌାଵ
= 𝑐௎௜,௝

௧ೌ + 𝑆1 × 𝑅𝑎𝑛𝑑 × ቀ𝑐௎௥ଵ,௝

௧ೌ − 𝑐௎௜,௝

௧ೌቁ + 𝑆2 × 𝑅𝑎𝑛𝑑 × ቀ𝑐௎௥ଶ,௝

௧ೌ − 𝑐௎௜,௝

௧ೌቁ (2)  

where 𝑆1 = 𝑒𝑥𝑝 ቀ
௙೔ି௙ೝభ

௔௕௦(௙೔ାఌ)
ቁ , 𝑆2 = 𝑒𝑥𝑝(𝑓௥ଶ − 𝑓௜), Rand is a random number in [0, 1], 

𝑟1 ∈ [1,2, . . . . . 𝑁] is the index of the mate of thi hen, 𝑟2 ∈ [1,2, . . . . . . 𝑁] is the index 
of randomly chosen rooster (or hen), 𝑆1 and 𝑆2 are the influence factors. 
Chick Movement:  Following [17], chick movement can be formulated as:  

𝑐௎௜,௝

௧ೌାଵ
= 𝑐௎௜,௝

௧ೌ + 𝐹𝐿 × ቀ𝑐௎௠,௝

௧ೌ − 𝑐௎௜,௝

௧ೌቁ                (3)  

where 𝑐௎௠,௝

௧ೌ  denotes the location of the mother of 𝑖௧ℎ chick, for 𝑚 ∈ [1,2, . . . . 𝑁],  

FL∈ [1,2] denotes the randomly selected speed of the chick following the mother. 
For selecting the CH among, accessible SNs become chickens; nodes with best fit-

ness values become roosters, with worst fitness are chicks, while the remaining nodes 
are hens. In each round, location of the rooster is updated using formula (1). Following 
the rooster, location of every hen is updated using formula (2). The chicks searching 
for food around their mother explore search spaces, which is captured in formula (3). 
Ranking of chickens maintains hierarchical order. Based on fitness values, chickens are 
ranked. After ranking, relationships between mothers and chicks are identified, to find 
differences between the chicks. Algorithm 1 depicts the proposed algorithm for CH 
selection. The SN, selected by the CSO algorithm, becomes a CH, while remaining SNs 
form its cluster. After CH selection, patient data is sent to the CH, and can be removed. 
Algorithm 1: Multi objective based CSO Algorithm for CH selection 
Input: N number of CHs, CSO parameters; Output: Pareto Solution S indicating the nodes that act as CHs. 

1.Initialize all the parameters 
𝑅௡ , 𝐻௡ , 𝐶௡,, 𝑀௡𝑎𝑛𝑑 𝐵 

2.Initialize the chickens in the swarm randomly as 
𝐶௎೔

(𝑖 = 1,2, . . . . . . . 𝑦) 
3.Initialize the total count of iterations as 𝑀𝑎𝑥௜௧௥  
4.While 𝑇௥ < 𝑀𝑎𝑥௜௧௥ do 
5.If (𝑇௥%𝐵 = 0) then 
6.Establish the hierarchical order through ranking 

of chickens 
7.Partition the swarm group and identify the 

mother-child relationship 
8.End if 
9.For (𝑖 = 1)do 

10.If (𝑖 == 𝑟𝑜𝑜𝑠𝑡𝑒𝑟)do 
11.Perform local update of the rooster’s location 

using (1) 
12.End if 

13.If (𝑖 == ℎ𝑒𝑛)do 
14.Perform local update of the hen’s location using 

(2) 
15.End if 
16.If (𝑖 == 𝑐ℎ𝑖𝑐𝑘)do 
17.Perform local update of the chick’s location us-

ing (3) 
18.End if 
19.Estimate the fitness of the obtained solution us-

ing 𝐹𝑖𝑡𝑛𝑒𝑠𝑠௙௜௡௔௟ 
20.If the solution outperforms the older oneup-

date location 
21.End for 
22.Label the best solution as pareto optimal solu-

tion S 
23.End while 
24.Return S 

3 Experimental results and discussion 

Performance of the proposed solution was measured using: cluster formation time; en-
ergy consumption: energy consumed by SNs (in mJ); network lifetime: for how many  
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Fig. 2. (a) Cluster formation time; (b) Energy consumption (EC)/number of packets; (c) EC/ 
number of SNs; (d) EC/transmission power ranges; (e) Network Lifetime (NL)/number of SNs; 

(f) NL/number of Clusters; (g) Throughput (T)/number of SNs; (h) T/transmission power 
ranges; (i) Propagation delay/number of SNs.  

rounds, network remains operational; throughput: CHs-BS (Mb/s); delay: transmission 
time SN-BS via CH (ms). Proposed approach was compared to EO-μGA [20], ABCSA 
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[21], BCO [22] and PSO [23]. Simulated network parameters were: Number of SNs: 
1000; IoMT sensing area: 500m2; BS position: (500,500); Packets Size:1500 bits; Max 
Throughput: 1 Mbps; Initial Node Energy: 2J; Electronics energy: 30 nJ/bit; Data ag-
gregation energy: 3 nJ/bit/signal; Transmitting power: 9 mW; Max number of rounds: 
500. The CSO algorithm parameters were: Population Size: 100; Number of rosters: 3; 
Number of hens: 5; Update time steps: 10; Maximum Iterations: 150. 

As shown in Fig. 2a, CSO-based clustering has the lowest cluster formation time. 
Moreover, the proposed CSO minimizes the cost by 1.9%, 2.7%, 3.8% and 4.9% in 
comparison to EO-μGA, ABCSA, BCO and PSO, respectively (Fig. 2b). Next, when 
number of SNs varied from 50 to 1000 (Fig. 2c), the proposed scheme minimized en-
ergy consumption by 3.4% to 7.1%. It was also most optimal from the perspective of 
energy consumption, for transmission power between -25𝑑𝐵𝑚 and -5𝑑𝐵𝑚 (Fig. 2d). 
Proposed solution improved network lifetime (for 50 to 1000 SNs; Fig. 2e) by 3.2% to 
17%. Network lifetime was also evaluated with respect to the number of clusters (from 
3 to 10; Fig. 2f). Here, the gain was between 5.7% and 21.3%. The throughput was 
simulated for 50 to 1000 SN’s (Fig. 2g). The performance gain was 0.1% to 39%. 
Throughput was also evaluated when varying transmission power (-25𝑑𝐵𝑚 to -5𝑑𝐵𝑚; 
Fig. 2h) and the improvement was 6.8% to 48,2%. Finally, Fig. 2i depicts propagation 
delay for varying number of SN, from 50 to 1000. Results confirm that proposed SCO 
scheme reduces propagation delay by 0.05ms to 0.56ms. 

4 Concluding remarks 

In this work, an energy efficient CSO-based clustering scheme was proposed for 
IoMT ecosystems. The proposed scheme uses fitness function, based on residual en-
ergy, queuing delay, communication cost, link quality and node centrality. Additional 
details about the approach, including extensive literature review can be found in [24]. 
The performance of the proposed scheme was compared with EO-μGA, ABCSA, BCO 
and PSO approaches. CSO-based approach was more efficient in all categories, with 
reduction of energy consumption by 3-7%. In the future, the proposed scheme will be 
extended with respect to mobility of nodes, body actions, and cross layer optimization. 
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