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Abstract. Recently, the pseudo-Newton method was proposed to solve
the problem of finding the points for which the maximal modulus of a
given polynomial over the unit disk is attained. In this paper, we propose
a modification of this method, which relies on the use of fractional order
derivatives. The proposed modification is evaluated twofold: visually via
polynomiographs coloured according to the number of iterations, and
numerically by using the convergence area index, the average number of
iterations and generation time of polynomiographs. The experimental re-
sults show that the fractional pseudo-Newton method for some fractional
orders behaves better in comparison to the standard algorithm.

Keywords: pseudo-Newton method · Riemann–Liouville derivative ·
Caputo derivative · dynamics.

1 Introduction

Newton’s method is one of the most famous and important algorithms in numer-
ical analysis. It has a local quadratic convergence and is undefined for critical
points. This simple algorithm has a long history and ample bibliography [13]. In
recent years many modifications of Newton’s method have been proposed.

An interesting modification of the Newton’s method is the pseudo-Newton
method [8]. That method effectively finds the local maximal values of the mod-
ulus of complex polynomials over the unit disc on the complex plane.

In recent years, various fractional derivatives have become an intensive field
of study in root-finding area. The first method, in which the classical derivative
was replaced by the fractional ones, was the Newton’s method [5]. Then, the
Newton-type method with convergence of order ν was proposed [1], where ν
is the order of the fractional derivative. Next, the use of fractional derivatives
and various iteration processes in the Newton’s method was shown [6]. Then, a
variant of Chebyshev’s method [2] and a two-step iterative scheme with fractional
derivatives [3] were introduced.
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In this paper, we replace the classic derivative with the fractional derivatives
in the pseudo-Newton method. This leads to a new class of pseudo-Newton’s
methods – fractional pseudo-Newton methods. The performed numerical exper-
iments suggest that for some values of ν the fractional pseudo-Newton method
is better in comparison to the standard pseudo-Newton one.

The paper is organised as follows. In Sec. 2, the definitions of the Riemann–
Liouville and Caputo derivatives, are presented. In Sec. 3, the pseudo-Newton
method, introduced in [8], is described. In Sec. 4, the application of the frac-
tional derivatives into the pseudo-Newton method is proposed. In Sec. 5, the
experimental results are shown. Finally, Sec. 6 concludes this paper.

2 Fractional Derivatives

Integer order derivatives and integrals are commonly known and used. As a
natural generalisation, the fractional derivative was introduced [10]. It can be
defined in many ways. In this paper, we use Riemann–Liouville and Caputo
derivatives as the most commonly used ones. We recall their definitions [10,11].

Let Γ be the well-known gamma function. The Riemann–Liouville derivative
(RL-derivative) of order ν ∈ (n− 1, n], n ∈ N is defined as:

Dν
RLf(t) :=

{
1

Γ (n−ν)
dn

dtn

∫ t

0
f(τ)

(t−τ)ν+1−n dτ, if ν ∈ (n− 1, n),
dn

dtn f(t), if ν = n.
(1)

We also recall that the Caputo derivative (C-derivative) of order ν ∈ (n− 1, n],
n ∈ N, of a real–valued function f is defined as:

Dν
Cf(t) :=

{
1

Γ (n−ν)

∫ t

0
f(n)(τ)

(t−τ)ν+1−n dτ, if ν ∈ (n− 1, n),
dn

dtn f(t), if ν = n.
(2)

Both of these fractional derivatives are linear.
In this paper, we calculate the fractional derivatives of polynomials. Thus,

to determine them, we can only consider monomial tm, thanks to linearity. So,

Dν
RLt

m =
Γ (m + 1)

Γ (m− ν + 1)
tm−ν , Dν

Ct
m =

{
Γ (m+1)

Γ (m−ν+1) t
m−ν , if m > n− 1,

0, if m ≤ n− 1,
(3)

where ν ∈ (n− 1, n), n ∈ N, m ∈ R.
Let us note that for a constant function and ν ̸= 1 we obtain that Dν

RLc ̸= 0
and Dν

Cc = 0. So, these derivatives are not equal.
So far, we presented the fractional derivatives of functions defined on R. But

we are going to use them on C. However, we cannot replace the real variable t
by a complex variable z in the definitions in (1) and (2) because of the multi-
valuedness of expressions that are present under integrals in both derivatives.
Nevertheless, in the case of analytic functions the formulas for the RL- and C-
derivative for monomial zm are the same as in (3), but only for a complex variable
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z such that z ∈ C \ {c ∈ C : Im(c) = 0 ∧ Re(c) < 0}, and m ̸= −1,−2,−3, . . ..
This additional assumption is related to the branch cut line that is needed to
eliminate the multi-valuedness of zm if z ∈ C and m ∈ R.

3 The Pseudo-Newton Method

Let p be a non-constant complex polynomial over the unit disk D = {z ∈ C :
|z| ≤ 1}. Let us then consider the problem of finding the points for which we
attain the maximal modulus over D, i.e., ∥p∥∞ = max{|p(z)| : z ∈ D}.

According to the Maximum Modulus Principle [7], ∥p∥∞ is attained at the
boundary of D [8]. Moreover, we have that a point z∗ ∈ D is a local maximum
of |p(z)| if and only if

z∗ =

(
p(z∗)

p′(z∗)

)/(∣∣∣∣ p(z∗)

p′(z∗)

∣∣∣∣). (4)

Equation (4) is the test for checking if z∗ is a local maximum of |p(z)| over
D. But instead of solving (4) one can solve the following equation [8,9]:

G(z) = p(z)|p′(z)| − zp′(z)|p(z)| = 0. (5)

All the solutions of (5) are the fixed points of (4). To find them one can use
the pseudo-Newton method [8]. This method has the following form:

zn+1 = zn − Gn(zn)

G′
n(zn)

, n = 0, 1, 2, . . . , (6)

where z0 ∈ C is a given starting point and Gn(z) = p(z)|p′(zn)| − zp′(z)|p(zn)|.
Let us observe that the functions Gn are easily differentiable with respect to z
because the modules in them are constant values.

The proof of convergence of the pseudo-Newton method can be found in
[12], where this method is converted to some equivalent convergent Newton-
like method. Moreover, the pseudo-Newton method can be easily generalised to
higher-order methods [4].

4 The Pseudo-Newton Method with Fractional
Derivatives

In recent years, many applications of fractional derivatives appeared in the liter-
ature. A good example is the use of Riemann–Liouville and Caputo derivatives
in the classical Newton’s method [1,5]. In this section, we present a similar com-
bination of the pseudo-Newton method with the fractional order derivatives.

Let us denote by Dν
∗ any of the two considered fractional derivatives, i.e.,

Dν
RL or Dν

C . By replacing the classical first derivative G′
n in (6) by Dν

∗ , we get

zn+1 = zn − Gn(zn)

Dν
∗Gn(zn)

, n = 0, 1, 2, . . . . (7)
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Such defined methods are called fractional pseudo-Newton methods.
In these methods, we need to calculate the derivative Dν

∗Gn(z). When we look
closely at the form of function Gn, we can notice that for a fixed n the values of
|p′(zn)|, |p(zn)| are constant. Therefore, the terms p(z)|p′(zn)| and zp′(z)|p(zn)|
are polynomials of argument z. So, due to the linearity property of Dν

RL and
Dν

C , the derivative Dν
∗Gn(z) has the following form

Dν
∗Gn(z) = |p′(zn)|Dν

∗(p(z)) − |p(zn)|Dν
∗(zp′(z)). (8)

5 Numerical Results

In this section, we present the numerical results of application of the proposed
methods in practice. We start by presenting the polynomiographs that show
the speed of convergence and the dynamics of the proposed method graphically.
Then, we show the dependencies between some numerical measures and the order
of the considered fractional derivatives.

To generate a polynomiograph in the given area, we take each point of this
area as a starting point for (7). Then, we map the number of the performed
iterations to a colour by using the colour map from Fig. 1. Basing on the poly-
nomiograph, we compute the following numerical measures: the average number
of iterations (ANI) in the considered area, the convergence area index (CAI, i.e.,
the ratio of the number of the points that converged to the number of all points
in the considered area), and the generation time of the polynomiograph.

0 3 6 9 12 15 18 21 24 27 30

Fig. 1. The colour map used in the experiments.

The experiments were performed for a number of polynomials, but due to the
lack of space, we present here the complete results (i.e., the polynomiographs and
the plots of numerical measures) only for p4(z) = z4 − 10z2 + 9. To generate the
polynomiographs we used the following parameters: the area is fixed as [−3, 3]2,
the maximal number of iterations equals to 30, accuracy ε = 0.001, and image
resolution is 800×800 pixels. The experiments were performed on the computer
with: Intel i5-9600K (@ 3.70 GHz) processor, 32 GB DDR4 RAM, and Windows
10 (64-bit). The software was implemented in Processing.

We start with the polynomiographs for p4. In Fig. 2, we see the polynomio-
graph generated by the pseudo-Newton method with the classical derivative.
Next, in Figs. 3 and 4, we see the polynomiographs obtained with the fractional
versions of the pseudo-Newton method. We have chosen only the most repre-
sentative ones. The presented dynamics is related to the number of iterations
needed to achieve the maximum modulus of polynomials via the investigated
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algorithms. In general, the blue colour in the polynomiographs means quick con-
vergence, the green one means average convergence and the red colour denotes
slow convergence. The polynomiographs from Figs. 3, 4 show less dynamic in
comparison to the reference one from Fig. 2. Indeed, one can see that the larger
or lower the value of ν related to ν = 1 the slower the convergence of the poly-
nomiographs (we can observe more red colour). Additionally, careful analysis of
them suggests that there exist values of ν for which the fractional pseudo-Newton
methods could be better (in the mean of higher CAI and lower ANI values) in
comparison to the pseudo-Newton method with the classic derivative.

Fig. 2. The dynamics for the classical derivative (ν = 1) for p4.

(a) ν = 0.775 (b) ν = 0.850 (c) ν = 1.2 (d) ν = 1.625

Fig. 3. Examples of dynamics for the RL-derivative for different values of ν for p4.

The dependencies between the considered numerical measures (ANI, CAI,
and generation time) and the order ν of the fractional derivatives for p4 are
presented in Fig. 5. The best values of the numerical measures are the following:

– classical derivative – ANI: 8.578, CAI: 0.998, time: 1.180 s,
– RL–derivative – min. ANI: 8.197 (ν = 0.93), max. CAI: 0.999 (ν = 0.835),

min. time: 5.316 s (ν = 0.940),
– C–derivative – min. ANI: 7.747 (ν = 0.850), max. CAI: 0.999 (ν = 0.805),

min. time: 4.387 s (ν = 0.890).

From the results presented above and the plots shown in Fig. 5, one can
see that by using fractional derivatives one can decrease the value of ANI and

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_22

https://dx.doi.org/10.1007/978-3-031-08754-7_22


6 K. Gdawiec, A. Lisowska, and W. Kotarski

(a) ν = 0.775 (b) ν = 0.850 (c) ν = 1.2 (d) ν = 1.625

Fig. 4. Examples of dynamics for the C-derivative for different values of ν for p4.
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Fig. 5. The plots of (a) ANI, (b) CAI, and (c) time (in seconds), for polynomial p4.

improve the convergence (higher values of CAI). The decrease of ANI and the
increase of CAI compared to the classical case can be observed for ν < 1, but
in the neighbourhood of 1. For ν > 1, the results for the fractional case are
worse than for the classical derivative. Unfortunately, the generation time of
the polynomiographs via the fractional pseudo-Newton method cannot be im-
proved. In general, calculation cost is higher for fractional derivatives compared
to classical derivatives. It is because in the case of the classical derivatives,
we raise to a power with only an integer exponent, whereas in the fractional
case we raise to real-valued exponents that is more computationally expensive.
Additionally, one can observe that for C–derivative, the plots of ANI in some
intervals below ν = 1 are lying below those for RL–derivative. The same occurs
for time plots. Moreover, for CAI plots it is conversely. This generally denotes
that C–derivatives should be preferred over the RL–derivatives since the former
ones converge faster.

6 Conclusions

In this paper, we proposed the use of the fractional derivatives instead of the
classical one in the pseudo-Newton method. The experimental results showed
that the proposed approach can improve the standard pseudo-Newton method
in some aspects. Namely, for some values of order ν, the value of ANI is lower
and the value of CAI is higher. Unfortunately, the generation time of poly-
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nomiographs is higher, which is clear because we must perform more computa-
tionally complex calculations for the fractional derivatives.

Similar investigations could be performed for the higher-order pseudo-methods
[4]. It could be also interesting to check the behaviour of further modifications
of the fractional pseudo-Newton methods obtained by replacing the standard
Picard iteration with various types of iterations [4,6].
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