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Abstract. Nowadays, a wide range of critical services relies on Internet
of Things (IoT) devices. Nevertheless, they often lack proper security,
becoming the gateway to attack the whole system. IoT security proto-
cols are often based on stream ciphers, where pseudo-random number
generators (PRNGs) are an essential part of them. In this work, we in-
troduce a novel algorithm based on Hadamard matrices to evaluate the
strength (unpredictability) of binary sequences, a key part of the IoT
security stack. A comparative study with other algorithms that compute
the same parameter is also presented.

Keywords: Hadamard matrix · unpredictability · PRNG · IoT.

1 Introduction

Nowadays, diverse critical services such as smart-grid, e-health, e-govern or in-
dustrial automation depend on an IoT infrastructure. At any rate, as the services
around IoT grow dramatically so do the security risks [3]. Low-cost IoT devices,
currently characterized by their resource constrains in processing power, mem-
ory, size and energy consumption, are also characterized by their minimum se-
curity. Combining lack of security with network dependability, they become the
perfect gateway to compromise the whole network. This is the reason why 5G
related research [8] or specific calls such as that of NIST for lightweight cryptog-
raphy primitives [10], are addressing this concerning topic. In brief, lightweight
cryptography as well as stream ciphers (binary sequence generators) are the key
stones for designing security protocols.
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112586RB-I00/AEI/ 10.13039/501100011033), co-funded by the European Regional
Development Fund (ERDF, EU).
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In this work, we propose a novel algorithm based on the fractal structure
of the Hadamard matrices that analyses the unpredictability (linear complex-
ity) of binary sequences with application in cryptography. Finally, we discuss a
comparison among different algorithms that measure the same feature.

2 Preliminaries

Basic notation and concepts are now introduced.
Binary sequences: let {un}n≥0 = {u0, u1, u2, . . .} be a binary sequence with

un ∈ F2. Here we will just consider binary sequences with period a power of 2.
Linear Feedback Shift Register(LFSR): an LFSR is an electronic device with

L interconnected memory cells (stages) with binary content. Maximum-length
LFSRs generate PN-sequences with period T = 2L − 1, see [5].

Linear Complexity : the LC of a sequence measures its unpredictability and
is related with the amount of sequence we need in order to reconstruct the whole
sequence. In cryptographic applications, LC must be as large as possible.

Generalized sequences: they are a family of binary sequences {sn}n≥0 ob-
tained by means of the self-decimation of a PN-sequence, see [6]. The period of
any generalized sequence is a divisor of 2L−1 and the linear complexity satisfies
2L−2 < LC ≤ 2L−1 − (L− 2) as proved in [4].

Binomial sequences: a binomial sequence
{(

n
k

)}
n≥0, k being an integer, is a

binary sequence {(
n

k

)}
n≥0

=

{(
0

k

)
,

(
1

k

)
,

(
2

k

)
, . . .

}
mod 2

(1)

whose terms are the binomial numbers
(
n
k

)
reduced mod 2. The sequence given

in (1) is the kkk-th binomial sequence. Additional characteristic and properties
of such sequences can be found in [1].

3 Binomial representation of binary sequences

Every binary sequence {un} whose period T = 2t is a power of 2 can be written
as a linear combination of binomial sequences [1],[2]:

{un} =
2t−1∑
i=0

ci

{(
n

i

)}
, (2)

where t is a non-negative integer,
{(

n
i

)}
is the i-th binomial sequence and the

ciare binary coefficients. The previous equation is the binomial representation
of the sequence {un}. Moreover, imax is an integer (0 ≤ imax ≤ 2t − 1) such
that the coefficient cimax of the binomial representation satisfies that cimax 6= 0
while ci = 0 for all index i in the range (imax < i ≤ 2t − 1).

The coefficient cimax and the binomial representation provide information
about two fundamental parameters of the sequence: the period T of {un} is that
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of the binomial sequence
{(

n
imax

)}
[1, Proposition 3] while the linear complexity

LC of {un} is that of the binomial sequence
{(

n
imax

)}
[1, Corollary 14], that is

LC = imax + 1. The binomial matrix H2t is a binary Hadamard matrix [7]
of size 2t × 2t constructed as:

H2t =

[
H2t−1 H2t−1

02t−1 H2t−1

]
,

being 02t−1 the 2t−1×2t−1 null-matrix. Indeed,H2t exhibits the typical structure
of a Hadamard matrix: three identical blocks plus the null-block. In turn, each
block H2t−1 is a Hadamard matrix too. In addition, any binomial matrix H2t

can be easily constructed from the binomial sequences such as follows: (a) its
rows correspond to the first 2t bits of the first 2t binomial sequences and (b) its
columns correspond to shifted versions of the first 2t binomial sequences starting
each of them in its first 1.

We write the binomial matrix H24 = H16 that will be a basic structure for
the construction of other binomial matrices of higher dimensions.

H16 = H24 =

[
H23 H23

023 H23

]
,

where

H8 = H23 =



1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


.

Due to the particular structure of the binomial sequences, we can reformulate
the binomial representation of {un} given in (2) and convert it into a matrix
equation including the binomial matrix H2t . That is:

(c0, c1, . . . , c2t−1) = (u0, u1, . . . , u2t−1) ·H2t mod 2, (3)

where (u0, u1, . . . , u2t−1) corresponds to the 2t successive terms of the sequence
{un} and (c0, c1, . . . , c2t−1) are the binary coefficients of the equation (2).

4 An algorithm to compute the LC of binary sequences

The equation (3) is the core of a new algorithm that computes the LC of a
sequence. In fact, if the binomial matrix is written in terms of its column vectors
H2t = (h0h0h0,h1h1h1, . . . ,h2t−1h2t−1h2t−1), then the coefficients ci are easily calculated as:

ci = (u0, u1, . . . , u2t−1) · hihihi (0 ≤ i ≤ 2t − 1). (4)

The computation starts with the coefficient c2t−1 and proceeds in reverse order
until the first coefficient ci 6= 0 is reached. In that case, imax = i and LC is

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_19

https://dx.doi.org/10.1007/978-3-031-08754-7_19


4 A. Fúster-Sabater ’et al.’

Algorithm 1: Computation of the LC of a given sequence

Input: seq: sequence of period 2t, Ht: the (2t × 2t) binomial matrix.
imax = 0; i = length(seq)− 1;
while i ≥ 0 do

ci = (u0, u1, . . . , u2t−1) · hihihi;
if ci 6= 0 then

imax = i;
Break;

endif
i = i− 1;

endwhile
Output: LC = imax+ 1: Linear complexity of the sequence.

easily computed as LC = imax+1. Algorithm 1 illustrates such a computation.
Now, two basic ideas can be drawn:

1. The computation of LC is reduced to products modulo 2 of binary vectors.
Clearly, its computational complexity is lower than that of other algorithms
found in the literature, see sub-section 4.2.

2. If the column himaxhimaxhimax has many 0′s and only a few 1′s, then only a few terms
of the sequence {un} will be required to compute its LC.

The previous algorithm is particularly useful when we analyse sequences
whose LC is upper bounded by a maximum value LCmax. In that case, the
computation of coefficients is simplified as ci = 0 for every coefficient in the
range (imax < i ≤ 2t − 1). Thus, the Algorithm 1 starts with the index
i = imax = LCmax − 1 computing directly the coefficient cimax.

4.1 Application of the algorithm to generalized sequences

The generalized sequences {sn}n≥0 are ideal candidates for the application of
Algorithm 1. In fact, their T is a power of 2 and their LC is upper bounded.
Therefore, the Algorithm 1 starts with i = imax = 2L−1− (L−1) and computes
the value of cimax. If the coefficient cimax 6= 0, then the complexity of the
generalized sequence is LC = 2L−1 − (L − 2), otherwise LC will take a lower
value. The column himaxhimaxhimax corresponds to the (L − 1)-th column of the matrix
H2L−1 read from right to left. As far as L increases by 1, the column himaxhimaxhimax is
shifted one position to the left. Next, we will apply these Hadamard matrices to
the computation of LC for different values of L.

For L in the range 2 ≤ L ≤ 17: we fix H16 as our reference matrix, called
16-box and depicted in Table 1. The successive matrices H2L−1 in this range are
made up of 16-boxes. Then, we divide the period T = 2L−1 of the generalized
sequence by 16 to determine the number of 16-boxes included in its binomial
matrix H2L−1 . Next, we count the number of 1′s in the column himaxhimaxhimax of the 16-
box and, finally, we multiply this number by the number of 16-boxes in H2L−1

to get the total number of 1′s in the general column himaxhimaxhimax.
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Table 1. 16-box to analyse generalized sequences with 2 ≤ L ≤ 17

H8 H8

08 H8

L = 17 . . . 14 13 . . . 10 9 . . . 6 5 . . . 2

For L in the range 18 ≤ L ≤ 33: we now use a 32-box as shown in Table 2,
where H16 is the 16-box. Next, we divide the period T of {sn} by 32 and analyse
the number of 1′s in the successive columns himaxhimaxhimax of the 32-box.

Table 2. 32-box to analyse generalized sequences with 18 ≤ L ≤ 33

H16 H16

016 H16

L = 33 . . . 26 25 . . . 18 17 . . . 10 9 . . . 2

For L in the range 34 ≤ L ≤ 65: we now use a 64-box as shown in Table 3,
where H32 is the 32-box. Now we divide the period T of the sequence by 64 and
analyse the 1′s of the successive columns of the 64-box.

For L in the range 66 ≤ L ≤ 129: the study is similar to that of the previous
intervals but now we would use a 128-box made up of 64-boxes according to the
typical structure of a Hadamard-matrix. We would divide the period T of the
sequence by 128 and would analyse the number of 1′s in the successive columns
of the 128-box.

In all this analysis, the least suitable cases are generalized sequences whose
columns himaxhimaxhimax in H2L−1 correspond to binomial sequences

{(
n
2m

)}
as half their

digits are 1′s. Consequently, T/2 digits of {sn} are needed to compute its LC.
Conversely, the most suitable cases are generalized sequences whose columns
himaxhimaxhimax in H2L−1 correspond to binomial sequences

{(
n

2m−1
)}

where only T/2m

of their digits are 1′s. Consequently, T/2m digits of {sn} are enough to compute
its LC.
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Table 3. 64-box to analyse generalized sequences with 34 ≤ L ≤ 65

H16 H16 H16 H16

016 H16 016 H16

H16 H16
032

016 H16

L = 65 . . . 50 49 . . . 34 33 . . . 18 17 . . . 2

Remark 1 With only four boxes (16, 32, 64 and 128-boxes), we have easily got
values of L in the range L > 128, which is the real cryptographic range.

Moreover, we realize that Algorithm 1 will never require the knowledge of the
whole sequence {sn} to compute its LC as there will always be at least a null-
block in the binomial matrix. Consequently, the amount of sequence required is
much less than that of other algorithms, see next sub-section.

4.2 Comparison with other algorithms

We compare the proposal here developed with other algorithms computing LC.
The comparison is summarized in Table 4, where l is the sequence length, r the
number of binomial sequences in the binomial decomposition and 5G denotes
algorithm focussed on 5G Technologies.

5 Conclusions

In this work, a new algorithm, the Hadamard matrix-based algorithm to com-
pute the linear complexity of binary sequences, has been introduced. It exhibits
a better performance (lower computational complexity and sequence require-
ments) than that of similar algorithms computing LC. This is a big step in the
study of binary sequences with period a power of 2 as well as it makes easier
to detect flaws such as predictability in this kind of sequences. Moreover, the
binomial decomposition as a way to extract information from a given sequence is
an innovative tool and it is left for future work its application to other features,
e.g. auto-correlation, balancedness, compression, of binary sequences.
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Table 4. Comparison between proposed and existing algorithms to calculate LC

Authors Merits Demerits O(.) Length 5G
Berlekamp et al. For sequences High requirements

[9] (1969) of any length. in length O(l2) 2× l N
Applicable to

Improvement in seq. with length
Cardell et al. sequence length a power of 2. O(r × l) l − log l N
[1] (2019) requirements. Sequential.

Improvement in
sequence length

Martin et al. requirements. Applicable to
[7] (2020) It outperforms seq. with length O(l) l − log l Y

previous algorithms. a power of 2
Concurrent.

Great improvement
in sequence length

Fúster et al. requirements. Applicable to
(This work) It outperforms seq. with length O(l/2) l/2 Y

(2022) all the previous a power of 2
algorithms.
Concurrent.
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