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Abstract. We employ a variational splitting for the Crank-Nicolson
method and Pennes bioheat equation modeling the heating of the hu-
man head as a result of the cellphone antenna radiation. The solution
of the system of equations resulting from the 3D discretization of the
implicit time integration scheme with the Crank-Nicolson method has
O(N?) complexity using direct solver, resulting in the exact solution.
Iterative solvers (e.g., multi-grid solvers) deliver O(Nk) computational
cost resulting in an approximate solution. The alternating direction im-
plicit solver delivers O(N) complexity instead; it provides the exact so-
lution (as the direct solver). Still, it requires a regular tensor product
structure of the material data. In this paper, we propose a method for
generalizing the linear computational cost alternating direction implicit
solver using the Crank-Nicolson scheme into non-regular material data.

Keywords: Pennes problem, Variational splitting, Implicit method, Non-
regular material data, Linear computational cost

1 Introduction

Splitting methods modify the original linear systems of equations seeking to
reduce computation costs [11]. The methods have been originally proposed
for finite differences [8,9] and later generalized for isogeometric analysis (IGA)
[3]. We focus on parabolic equations discretized in space using tensor-product
IGA grid. We adopt an implicit time integration scheme based on the Crank-
Nicolson method. We employ the Kronecker product decomposition of the ma-
trix M = M, ® M, ® M_, that allows for linear cost factorization Mt =
Mt @ Mt @ M1 The results detailed in [1,5-7] show that the Kronecker
product-based solvers result in a linear cost for every time step. They offer an
attractive alternative for multi-frontal solver algorithms [2]. Splitting solvers re-
quire the regular tensor product structure of the material data. We propose a
method for generalizing the solvers into non-regular material data, preserving
the linear cost. We present exemplary numerical results of the heating of the
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human head based on a non-regular MRI scan and Pennes equations [10], and
the cellphone radiation data available from [4]. Our method can be employed to
a broad spectrum of applications of the variational-splitting solvers [1, 5, 6].

2 Varying coefficients in alternating directions solver

Lemma 1. Ii is possible to factorize in a linear O(N) computational cost a sys-

: ; Ou(z,y; . . —
tem of equations, resulting from the problem % =V (e(z,y; ) Vu(z, y; 1)) =
f(z,y;t) discretized in space with B-spline basis functions and in time with

Crank-Nicolson implicit scheme, having the non-regular material data €(x,y;t).

Proof. We discretize and test with B-splines. We however cut each one into
N, N, pieces (see Fig.1), so we have a total of {Z}(2)Z}}r=1,... N,N,5i=1,...N,N,
test functions. In such a way we obtain a weak formulation. Each equation with
B BY test function is replaced by N4V, equations with suitable test functions
{I,f(x)Ily}k=1,__.7Nq;l=17___7Nq. In the limit of N, the integrals equations converge

Z / Fla )T dedy —— | Fla,y)Bj,Bldedy (1)

— 00
k=1,...,Ng;l=1,. Na

With our partitioned test functions, we assume that each equation can be
approximated by one quadrature point. We generate a rectangular system of
equations, with NV x N, N, equations and N unknowns, repeated for N, N, sets of
N equations (see Fig. 1). Later, we will replace N equations from NN, N, system
of equations by a linear combination of N,IN, equations to obtain quadratic
N x N system. We will glue the test functions BY, BY back together from the
pieces {I;fIly}k:l,___7Nq7l:1,m7Nq. The left-hand side is of the following form

LHS = ( / BYBYL{T! + 1 / e(x,y)0, Bf BY0, T I} +
n/e(:c,y)BfﬁyB?I,fé‘yIly> Uij Vk=1,..,N;Ng;l=1,..,NyN, (2)

and the right-hand side terms, one for each test function Z{Z/, are derived from
the Crank-Nicolson scheme. We introduce quadrature points (&x,&;), one for
each test function Z7 (z)Z (y), and the Kronecker product approximation of the
left-hand side, ignoring terms of higher order with respect to n

LHS = > wiwy (B (&) Zi (81) B (E) I (&) +

i=1,...,Npsj=1,...,Ny
ne(&k, &) B7 (&) Ty (€x)0y BY ()0, L) (&1) +
ne(€r, &) BY (&) 0. T5; () BY (€0 TV (&) Ui j = (3)
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> wiwy (B (§k)Zx; (&) + 16r.10:B7 (§k) 0x L, (&k))
i=1,...,Ng:j=1,...,Ny
(BY(&)TV (&) + ner 10y BY (€9, T (&) Ui j = RHS
Vk=1,.. ,N;Ngl=1,..,N,N, (4)
Notice that ¢, ; = ¢(&,,&) is a given constant value of material data at the
quadrature point defined for a test function Z}Z} .

Ak = ’U_)k. X
(BE(EDTE (&) + 11 10: BY(EDDTE (&) -+
o (B, (€)TF (€) + 1110, B, (9)0.T (€0))

(5)
(Bf (Envang ) IN, N, (ENan,) T nen, v, 100 BY (En, N, )02 IR, N, (meNq)) aE

o (B (€van, TR vy () 10w v, 10 B, (x0T, v, (68,

for each k = 1,..., NyN,. Here, to save space, we have partitioned the first and
the last row of the matrix into two consecutive rows. The size of Ay, is N, Ny X N,

(BY(&)Z} (&) +né1,10, By (€)0, I} (&) -+ 0
B = w o 6)
0 - (BUETY(&) +nén, 10, BY (&), TV (&)

for each I = 1,..., NyNy, j = 1,..., N,. The size of each B;; block is N, x N,.
Using this notation, see Figure 1, we can rewrite our system in the following

form ABU = F
Ay 0 81,1 B1,Ny Ui ﬁ1,1
...... | = (7)

O e ANZ'/NQ BNqu,l e BN?/quNa/ uNw’Ny ‘FN:chvNqu

where ]i'm = fRHSk’l(%y)I,fIf for k = 1,..., NNy, I = 1,...,NyN,, and
RHS}, is defined according to the Crank-Nicolson employed time integration
scheme. A matrix has dimension NNy N, Ny x Ny N, Ng, B matrix has dimension
Nz Ny¢Ny x NyNy, U has dimension N, N, and F have dimensions N, N,NyN,.

G Bii -+ Bin, U1
o = (8)
GN,.N,N, Bnyng1 -+ By,n,N,] [UN.N,
Ay o 1] G [ Fi
...... A e = - 9)
0 - An,~,] LGN, N, N, ] | FN. Ny, N, N,
We sum up blocks of N, rows to recover B-spline test functions along x
Ar-- 01 G ] [ A
...... - (10)
0 - An,| [Gn,.N,N,] | F NNy N,
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(BT (&) BY (&k) + mé1 102 BY (€k)0:BY (&) -+
(B%, (€1)BY (&) + mé1 k02 By, (Ex)02 BT (k)
A = wy, e (11)
(B (&) B, () + nén, x0: B (&x)0: B (Er))
(B% (&r)B%. (&) + nén, 10 BY (k)02 B (&)

for each k = 1, ..., N,. Here, again, to save space, we have partitioned the first
and the last row of the matrix into two consecutive rows. Here

(Bf (k) B (&) + éix 02 Bf (§)0: B (&) =~

Y (BEEOTE (&) + e 02 B (6)DTT (6r)) (12)
r=1,...,Ngq
. . . a DRI Ng €k . .
for i =1,..., N, and in particular ¢; , = T" is selected in such a way

that these sums are as close as possible. Moreover Fj,; = [ RHSy 1 (z,y)BE B}
for k=1,..,N;, Il =1,.., NyN,. Notice, that this summation of rows does not
change the number of unknowns, which is related to the number of columns in

. N T
matrix A. We solve this system for [G; -+ Gy, n,n,] - Next, we take

81,1 B1,Ny 1T Ui 1 [ .C';l

(13)
Bnyngi -+ Byyn,nyl UNN, ] GN8N, N,

and we sum-up N, rows to recover the full B-splines along y

Big -+ Bin, Ui [ G

Bn,1- Bn,N, | [UN,.N,] | ON..N,

(f, BY€BY (&) + [, 7110, BY (€0, B{(&)) -+ 0
B = e (15)
0 - (J, BUE)BYE) + [, nen 10, BY(€)0,BY(&))
foreach [ =1,..., Ny, j =1, ..., N,. Here

(BY(&)BY (&) + ;.10 BT (€)0, BY (&1)) ~
> (BUGT(&) +nér10y BY (&), TF (&) (16)
r=1,...,N,

. . . - pDNEE Ert .
for j = 1,..., Ny and in particular ¢;; = % is selected in such a way

that these sums are as close as possible. Finally? we solve for Uy, v Un, N,
Bl e BNy Z/ﬁ gl
B, = (17)
B - By, Un,n, 9N, N,

Both systems (10) and (17) can be solved in a linear computational cost due to
the banded structures of matrices build with one-dimensional B-splines.
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Fig. 1: Partitioning of a matrices. Partition of a test function B,.
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Fig.2: (First row) Slices of the MRI scan of the human head. Linear cost of
the solver. (Second row) The temperature of the head without the cell-phone
antenna. The temperature of the head with the cell-phone antenna radiation.

Material Air |Brain|Skull Material Air|Brain|Skull

p [kg/m>® [1.16]1039[1645] ¢, [W/m®] | 0 [ 7100 | 590

¢ [J/kg°C] |1006] 3700 [1300 [Woc, [W/mC]| 0 |40000|3300

K [W/m°C][0.02] 0.57 | 0.4 ua0 [°C] | 20] 36.6 | 36.6
Table 1: Material data used in simulation.
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3 Variational splitting for Pennes bioheat equation

In this example, we start from the MRI scan of the head of Maciej Paszynski,
transformed into a 3D bitmap. We formulate the Pennes bio-heat equation

pc— — V- (KVu) = Wyep (ugo — u) + ¢ + gsar in 2 (18)

where K represents the thermal conductivity, ¢, is the metabolism, Wjc, stands
for the perfusion, and gsag is the heat source from the cellphone. We employ
the parameters from Table 1, following [4]. They are selected according to the
MRI scan data. We employ the alternating-direction solver with varying material
data. We derive the weak form with the Crank-Nicolson scheme; we discretize
with B-splines, and we approximate the left-hand side with Kronecker product
form ignoring the terms which are of the higher-order with respect to 7

1 K
E ( BY By, — T@xBfaxBﬁl)
2. pc 2

.3,k

1 K 1 K
BYBY — —7—0,BY0,BY / BiBf — —7—0,B;0,B7 | ult! =
(/Qy i Pn ch2 y 5 Oy n)(Q kD1 ch2 2Dy U] Wijk

xT z T z T K xT z xT z
Z/ B} BY BB}, BY Bj ugjk+7/ EZVBi BYBiuly, - V(BE,BYB)
ik pelo £

+é Q(Wb[cbua() - Z Bf BY Bjuij] + i + gm + q¢sar) B, BLBi (19)
i3,k
This allows applying Lemma 1 generalized for 3D. We assume that the air is
located where the intensity of the bitmap is < 1, the skin or brain (tissue in
general) where the intensity is in the range of (1,240) and the skull, where the
intensity is > 240. As the initial condition, we select the temperature of 36.6
Celsius of the human head and 20.0 Celsjus of the air. We assume first no addi-
tional heat source and no presence of the cell phone antenna radiation, gsar = 0.
The cross-sections of the 3D mesh after 10 minutes of the simulation are pre-
sented in Figure 2. As denoted by the red color, the maximum temperature is
36.6 Celsius. The blue color outside the head represents the air with a tempera-
ture of 20.0 Celsius. Next, we assume the gsar as estimated in Figure 6.13 [4].
The resulting heating of the human head after 10 minutes of the radiation is
illustrated in Figure 2. As denoted by the red color, the maximum temperature
is 38.4 Celsius degrees. The blue color of the human head represents the temper-
ature of 36.6 Celsius. We illustrate the linear computational cost of the solver
in Figure 2. We use computational grids of size 16 x 16 x 16, which using cubic
B-splines results in N = (16 + 3)3 = 6,859, then 24 x 24 x 24, which results in
N = (24 + 3)3 = 19,683, then (32 + 3)3 = 42,875, then (48 + 3)® = 132,651,
then (64 + 3)% = 300,763 and finally (96 + 3)* = 970,299. The computations
are performed on the Linux workstation with a 2.4GHz processor with 64 GB
of RAM. The computational burden related to distinguishing different material
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data in comparison to homogeneous material is negligibly small. Our solver is a
direct solver, and it provides the exact solution.

Conclusion. We can vary material data in implicit variational splitting solvers,
preserving the linear cost. We can vary the material data €; at quadrature
points. In the solver, we average them along lines parallel to the axis of the
coordinate system for each support of the test functions. We test the method on
the Pennes bioheat equation, and we verify the linear cost of the solver.
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