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Abstract. The paper presents the strategy for solving elastoplastic prob-
lems using a parametric integral equation system (PIES) and a trimming
technique. It allows even complex shapes of a plastic zone to be modeled
with a single surface and a set of trimming curves. New schemes for inte-
gration and approximation of solutions are developed to include changed
requirements. However, both of them have kept their advantages. Some
examples are solved, and the obtained results are compared with analyt-
ical solutions and those received from other numerical methods.
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1 Introduction

Next to FEM [1] and BEM [2], PIES [3, 4] is used for solving boundary problems
e.g. elastoplastic. The main advantage of PIES, in this case, is the elimination
of discretization of the predicted yield region (by cells in BEM) or the whole
domain (by finite elements in FEM). Instead, the plastic zone is modeled by a
surface (e.g. a Bezier surface [5]), which requires a small number of control points
to be defined. Modification of the surface is also very easy because is limited to
changing the positions of some control points. Moreover, the integrals are calcu-
lated globally over the whole domain, and the approximation of plastic strains
is performed in the same way. This distinguishes PIES from the approaches in
which Bezier surfaces are used for FEM modeling (e.g. [6]), as FEM still requires
discretization into elements for numerical integration or solution approximation.

The surfaces, however, have some limitations. If the expected yield region
is complex, it is difficult to deal with it using one surface. A solution to this
situation is the trimming technique, which allows modeling arbitrary regions
using trimming curves. The initial domain is defined by the bilinear surface
and the desired shape is created by the set of trimming curves. The proposed
approach has one additional advantage, very often there is no need to determine
the expected shape of the plastic area, as the entire created domain is treated
as potentially plastic. This prevents cases where an incorrectly predicted shape
necessitates resolving the problem. The trimming technique is often used in
isogeometric FEM [7,8] since the whole domain is always defined, but as is
mentioned above discretization into elements is still present.
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The main aim of the paper is to develop an approach for solving elastoplastic
problems with any shape of plastic regions using the trimming technique. The
proposed strategy requires modifying the plastic strain approximation method
along with determining the necessary interpolation points and adjusting the inte-
gration method currently used in PIES. For approximation, the inverse distance
weighting (IDW) method [9] is used, performed only on points designated by
the projection scheme [7], while for integration a modified transformation tech-
nique [2] for calculating singular integrals is applied. Three test examples are
included, with the results confirming the effectiveness of the approach.

2 PIES for elastoplastic problems

The PIES formula for solving 2D elastoplastic problems using initial stress for-
mulation can be presented in the following form [3, 4]

05iu(s) = Y- [ U (5. 9085(5) — P (5. 8)is ()} Sy 5)ds
=1 s (1)
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The fundamental solutions for displacement Uj;(3,s), traction Pj;(5,s) and
stress o} (5, y) are presented explicitly in [3,4]. The functions ;(s), p;(s) and
€P(y) describe the distribution of displacements, tractions on the boundary and
plastic strains in the domain, respectively. Both the boundary and the domain
in PIES are defined in a parametric reference system using curves and surfaces.
The boundary is composed of n segments represented by any curves I', whose
beginning and end are determined by s;_; and s;. The domain is modeled by
any surface (2. Variables s and s are parameters in the mentioned parametric
reference system, J;(s) is the Jacobian, y € 2 and [,j = 1..n.

3 The plastic zone modeled by the trimmed surface

In elastoplastic problems, it is not enough to define the boundary itself, as it is
not able to create a domain representing a plastic area. In FEM [1] to form such a
domain, regardless of the problem, the whole body is divided into finite elements
(Fig. 1a). In BEM [2] only the region with predicted plastic strains is modeled by
cells (Fig. 1b). It is more effective, but still requires discretization of part of the
domain and it can be troublesome if the region needs to be remodeled. PIES also
requires defining only the yield region, but it is represented as a whole, without
discretization, using a Bezier surface. In other words, the Bezier surface is like
one global element as shown in Fig. 1c. What is important, the defined initially
surface does not change when solving the problem (same as in BEM), and the
plastic zone is determined by yielded interpolation points at each increment.
As can be seen in Fig. 1a,b,c, the strategy used in PIES is more effective
than those applied in FEM and BEM. Posing a large number of elements requires
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declaring many nodes and modifying them in case of any shape changes. In PIES
the whole expected plastic region is defined by the small number of control points
of the surface [5]. Its modification is also very simple, it is enough to change the
position of individual points. The only problem that arises is the complexity
of the plastic zone, especially when it cannot be modeled with a single Bezier
surface. The strategy proposed in this paper is to use the trimming technique.

« interpolation point

in the trimmed region
* interpolation point

in the correct region

b) ) d) Y

Fig. 1. Modeling in: a) FEM, b) BEM, c) PIES d) PIES with the trimmed surface and
e) interpolation points arrangement in the correct and trimmed regions

The main idea of the trimming technique is to use a bilinear Bezier surface,
from which the expected domain is determined by trimming curves (Bezier curves
in this paper). A certain orientation rule should be followed when defining them.
It says that the correct region is to the left of the curve. Fig. 1d presents the
characteristic of the trimming technique using the geometry from Fig. 1c. As
can be seen, the bilinear Bezier surface is modeled using four control points
(blue squares) and the trimming curve (red line) designates the right area (grey
region). Bezier curves of any degree can be used for trimming. In addition to
the obvious advantage of being able to model complex domains, this strategy in
many cases relieves the need to predict the shape of the plastic region, as the
whole body area can be treated as potentially plastic.

4 Numerical solving of PIES with the trimmed surface

To solve PIES (1), functions %;(s), p;(s) and ”(y) should be found. They can
be approximated by series with various base functions. In recent papers, the
Lagrange polynomials were most often used for this purpose [3]. The number
of expressions in the mentioned series depends on the number of assumed col-
location (for displacements and tractions) or interpolation points (for plastic
strains). The latter are arranged globally within the whole surface according to
a predefined scheme e.g. uniformly or at places corresponding to roots of various
kinds of polynomials. Using the trimming technique some of them can be outside
the correct region (red points in Fig. 1e) and should not be used for the approx-
imation of plastic strains. To determine them, a projection scheme is used [7].
For each interpolation point, the closest projection from it to the trimming curve
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is found. Then using the magnitude of the vector from the interpolation to the
projection point and the tangential vectors of the trimming curve at the pro-
jection point the cross product is obtained. Taking into account the orientation
rule, if its direction is coming out of the plane, the analyzed interpolation point
is located outside of the correct region.

However, considering only some of interpolation points causes a problem
with applying the Lagrange polynomials for approximation. It comes from the
fact, that the set of points must have the same number of them in each row or
column. Therefore, a method which allows for any distribution of interpolation
points should be implemented. Many approaches can be applied [10], however,
in this paper, the simplest is used - IDW method [9]. The formula for plastic
strains approximation based on R points can be presented by

Srowr®Er(y,)
ép(y) — { 5:0 wr(y) Zf d(y7 yr) # O fOT a” T,

- , (2)

where w,(y) = m is a weighting function, d is a distance from the known
y,. to to the unknown y point and p is a power parameter. To predict a value for
any unmeasured location, IDW uses the measured values from a neighborhood
of influence. In this paper it is determined by a circle with a radius r and the
center at the unmeasured point.

The next step in solving PIES is to substitute the expression (2) into the for-
mula (1) and to calculate the integrals, before applying the collocation method.
The strategy used for boundary integrals is the same as for elastic problems, and
the domain integrals are calculated over the whole surface using a higher-order
quadrature [3]. Unfortunately, this time the strategy has to be modified since
a part of the domain is trimmed. In elastoplastic problems, some singularities
in domain integrals appear. The last integral from (1) is weakly singular, but
this singularity can be canceled by employing the transformation technique [2,
3], in which the surface is divided into triangles at a point of singularity. The
same technique is used for calculating strongly singular integrals in the stress
integral identity [3]. It can be also, after some modifications, a direct solution to
the problem of integration over the trimmed surface. Fig. 2 presents the way of
division into triangles in the original version of PIES and with trimmed surfaces
depending on the location of the singular point.

Fig. 2 shows that instead of using corner points of the surface, the real vertices
of the considered body are used. The division takes place in the domain of the
surface (unit square), therefore vertices should be recalculated to that parameter
space. It can be done using formulas describing the surface by a point inversion
algorithm, which in this paper is implemented only for the bilinear surface. For
more complicated cases (e.g. trimming curves form a concave boundary), an-
other strategy may be required. The initial geometry is divided into the smallest
number of triangles using existing vertices. They are treated as separate surfaces
and within them, the transformation technique is applied.

It should be emphasized, that the approximation formula (2) remains global
over the trimmed surface. Moreover, if the trimming causes there are too few
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a) b)

Fig. 2. The transformation technique with and without the trimmed surface: a) for
collocation point, b) for interpolation point

interpolation points around the trimming curve, they can be easily generated
according to the selected distribution along the given curve.

5 Examples

The first example is selected for initial verification as it has an analytical so-
lution [11], although it could be solved without the trimming technique. The
cantilever beam (Fig. 3a) is end-loaded, defined as plane stress with the mate-
rial parameters: E = 2 % 101 Pa, v = 0.25, 69 = 20Pa and H = 0. The von
Mises yield criterion is assumed (like in the remaining examples).
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Fig. 3. The considered trimmed geometry for: a) first, b) second and ¢) third example

The whole considered domain is modeled by the bilinear surface and the
assumed plastic zone (a part of that surface) is declared by the linear trimming
curve. Initially, interpolation points (36,64,100) are arranged globally at the roots
of Chebyshev polynomials of the first kind (this also applies to the remaining
examples), but finally, the trimming curve and the projection scheme eliminate
some of them (Fig. 3a). The area designated by the trimming curve is divided
into triangles for calculating singular integrals (the same technique is used in
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the remaining examples). Plastic strains are approximated by the IDW method
with r =04, p = 2.

Tip deflection versus applied force is calculated using PIES with the various
number of remaining interpolation points (R). The results are compared with
analytical solutions and presented in Table 1 in the form of L? relative error
norm. As can be seen, the error decreases as the number of interpolation points
increases. Moreover, the analytically designated plastic zone overlaps with the
area defined by yielded points obtained by PIES.

Table 1. L? error norm for tip deflection for various number of interpolation points

R (12 24 40
L710.051991(0.045149[0.038378

The next considered geometry together with applied boundary conditions
is presented in Fig. 3b. The domain of the problem is modeled by the bilinear
surface and one linear trimming curve. The plane stress conditions with the
following material properties are considered: £ = 70000M Pa, v = 0.2, 09 =
150M Pa and H = 0. Within the initial surface, 25 interpolation points are
arranged. Some of them are finally not inside the plastic region, therefore they
are eliminated by the projection scheme. The distribution of the remaining 20
interpolation points is shown in Fig. 3b. IDW is used with » = 5 and p = 2.

The displacements at the point (10,18) are obtained by PIES and FEM.
The load-displacement curve is presented in Fig. 4. It demonstrates the good
agreement between analyzed solutions. Taking FEM results as reference (due to
the lack of analytical solution), L? relative norm of displacements is 0.0214231.
There is also agreement in the yield area between both tested methods. More-
over, PIES is much less computationally demanding: in FEM 484 equations were
solved, while in PIES only 80.

1,2

—FEM __ —PIES ]

004 0,06
vertical displacement

Fig. 4. The load-displacement curve
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The last example concerns the geometry under the imposed displacement
modeled using the surface trimmed by two curves (Fig. 3c). The perfect plasticity
under plane stress state with £ = 1M Pa, v = 0.3, 09 = 0.9M Pa is assumed. 47
of the globally placed points remain in the correct area. The IDW parameters
arer =95, p=2.

The von Mises equivalent stresses oy s along the cross-section z = 5 are
obtained. Due to the lack of analytical solution, they are compared with FEM
results and L? norm is calculated. It equals 0.0229775 which means that the
results are very similar, but computational requirements are much smaller for
PIES than for FEM (PIES 84, FEM 586 equations).

6 Conclusions

The paper presents PIES with trimmed surfaces for solving elastoplastic prob-
lems. The domain is modeled by a surface and its unnecessary part is trimmed
by curves. The approximation of the plastic strains is performed by the IDW
method, which allows for any arrangement of interpolation points. Finally, the
domain integrals are calculated over the trimmed surface using the modified
division technique that cancels out the singularity in the integrand. In more
complicated cases, the earlier division into multiple surfaces may be required.

The proposed approach is tested on three examples with various numbers
of trimming curves. The obtained results are in good agreement with analytical
and FEM solutions. Further research is required, on more complex examples,
e.g. with holes or a curved boundary.
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