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Abstract. Solving rich vehicle routing problems is an important topic
due to their numerous practical applications. Although there exist a
plethora of (meta)heuristics to tackle this task, they are often heavily
parameterized, and improperly tuned hyper-parameters adversely affect
their performance. We exploit particle swarm optimization to select the
pivotal hyper-parameters of a route minimization algorithm applied to
the pickup and delivery problem with time windows. The experiments,
performed on benchmark and real-life data, show that our approach au-
tomatically determines high-quality hyper-parameters of the underlying
algorithm that improve its abilities and accelerate the convergence.
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1 Introduction

Solving rich vehicle routing problems (VRPs) is an important research topic, as
their practical applications span across different domains [12]. There are a mul-
titude of various VRP formulations that reflect real-life constraints, including
limited vehicle capacities, time windows, or the maximum waiting times [15].
Commonly, the main objective is to minimize the number of vehicles (K) serv-
ing all requests, whereas the secondary objective is to optimize the distance (T )
traveled in a routing schedule. Since VRPs are often NP-hard, the most widely-
used algorithms to approach such discrete optimization problems include vari-
ous (meta)heuristics—they do not ensure obtaining optimal solutions, but work
much faster than exact techniques and can be utilized in large-scale scheduling.

Although heuristics for VRPs were shown efficient in virtually all VRPs, they
are usually heavily parameterized, and the incorrect hyper-parameters lead to
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sub-optimal solutions. We tackle this issue and exploit particle swarm optimiza-
tion (PSO) to automate the process of selecting the pivotal hyper-parameters of
the route minimization algorithm (Section 2) applied to the pickup and deliv-
ery problem with time windows (PDPTW). It is formally defined in Section 1.1,
whereas Section 1.2 presents the current state of the art in solving this VRP vari-
ant. Our experiments, performed over benchmark and real-life data, showed that
PSO consistently evolves high-quality hyper-parameters that boost the abilities
of the optimization technique and accelerate its convergence (Section 3).

1.1 Problem Formulation

The PDPTW can be defined on a directed graph G = (V,E), with a set V
of B + 1 vertices and a set of edges E. The vertices vi, i ∈ {1, ..., B}, repre-
sent the locations of the requests, and v0 indicates the depot. A set of edges
E = {(vi, vi+1)|vi, vi+1 ∈ V, vi 6= vi+1} represents the links between particular
customers. The costs ci,j , i, j ∈ {0, 1, ..., C}, i 6= j, are equal to the distances
between the travel points. Each request zi, i ∈ {1, ..., n}, where n = B/2, is a
coupled pair of pickup (P ) and delivery (D) customers indicated by pz and dz,
respectively, where P ∪D = V \ {v0} and P ∩D = ∅. For each request zi, the
amount of delivered (qd(zi)) and picked up (qp(zi)) demand is defined, where
qd(zi) = −qp(zi). Each customer vi defines its demand (pickup or delivery), ser-
vice time si (s0 = 0 for the depot), and time window [ei, fi] within which either
pickup or delivery service should start (it can be completed after fi).

In PDPTW, the fleet is homogeneous (with K denoting its size), the capacity
of each vehicle is constant (Q). Each route r in the solution σ (which is a set of
routes), starts and finishes at the depot. In the PDPTW, minimizing the fleet
size is the primary objective, and decreasing the distance is the secondary one.

1.2 Related Work

The algorithms for minimizing the number of routes in the PDPTW include
exact and approximate methods. The former techniques can find an optimal so-
lution [11], but their main downside is that they are only applicable to small and
moderate-sized problem instances [6]. On the other hand, the approximate meth-
ods allow us to find near-optimal solutions to larger problems in a short time.
The heuristics fall into one of the three categories: construction, two-phase, and
improvement algorithms [4]. Construction algorithms build the solution from
scratch by seeding new routes when necessary. When none of the vehicles can
handle a request3, a new one is taken from the fleet. In [8], the authors seed a
new route only after both insertion and exchange operations fail to introduce the
request to the existing routes. Two-phase algorithms follow two general schemes:
cluster-first route-second, and route-first cluster-second. The main idea is to re-
duce the search space by combining multiple customers into clusters. Zunic et.
al [16] split the set of customers into clusters based on the distance to the depot.

3 The reasons for this inability may be capacity or time window constraint violation.
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Combining vehicles from different clusters is not allowed, but adding unclustered
customers to a particular cluster is possible. Moreover, the proposed algorithm
allows for hiring vehicles (if necessary) at a higher cost. The improvement algo-
rithms start with a low-quality solution and minimize the fleet size and distance.
The improvements result from relocations or exchanges of route fragments [7].

The metaheuristics involve population-based and local search approaches [3].
The first group focuses on bio-inspired techniques such as ant or bee colony opti-
mizations, particle swarm optimization, firefly or bat algorithms [1,14], and the
genetic and memetic ones [2]. The local search algorithms include tabu searches,
simulated annealing, or the greedy search procedures, as well as a variety of
neighborhood search methods [1,5]. Their main drawback is that they are heav-
ily parameterized, and the parameter tuning process is time-consuming. There-
fore, some techniques employ run-time adaptation through e.g., analyzing the
characteristics of the problem instance and selecting the best parameters for
the given problem variant. A different approach is proposed in [17], where the
tuning exploits the historical data collected through GPS devices. Overall, we
follow this research pathway and introduce PSO for optimizing the pivotal pa-
rameters of a guided ejection search-powered route minimization algorithm for
the PDPTW [13]. This algorithm has been shown to be outperforming other ap-
proaches for minimizing the number of routes in the PDPTW, therefore we focus
on it here. However, PSO is independent from the underlying route minimiza-
tion technique, thus can be effectively deployed to optimize other algorithms
too. Additionally, this metaheuristics is utilized because it offers high-quality
performance in other tasks that involve hyper-parameters’ tuning [9].

2 Configuring the Guided Ejection Search Using PSO

At each step of the guided ejection search (GES, Algorithm 1; we also report the
time complexity of each step4, where n is the number of transportation requests),
inspired by [13], a random route r is drawn, its requests are inserted into the
ejection pool (EP) (line 3), and then up to ε attempts to re-insert them back into
the solution σ are undertaken. The tabu pool (TP) of maximum size α and with
the maximum number of occurrences of the same entry β is initiated (line 4).
The penalty counters (PCs) p indicate the re-insertion difficulty of the request. A
request hin is popped from the EP (line 8). If there are several feasible positions
to insert hin into σ, a random one is chosen (line 10). Otherwise, the inserted
request violates the constraints, and the solution with hin is squeezed through
local moves to restore its feasibility (line 11). If squeezing fails, the request’s p
is increased (line 14), and hout (with minimal p[hout]) is ejected to insert hin
(lines 15–19). Finally, σ is mutated with a probability π using out/in-relocate
and out/in-exchange moves (line 20)—the maximum and feasible number of
mutation moves cannot exceed κ and λ, respectively. The optimization finishes
once the maximum time has elapsed (in this work, it is two minutes).

4 Although for Squeeze and Mutate, their time complexity is fairly high, it is their
worst-case complexity, and these procedures terminate much faster in practice.
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Algorithm 1 The route minimization guided ejection search.
1: σbest ← σinit; σ ← σinit . θ(n)
2: while not stop condition do
3: Initialize EP with requests from a random r . O(n)
4: Initialize tabu pool TP(α, β) . O(1)
5: Initialize PCs as p[hj ] := 1, j = 1, 2, ..., n . θ(n)
6: Initialize iteration counter k := 1 . O(1)
7: while EP 6= ∅ and k ≤ ε do . max. ε iterations
8: k ← k + 1; Select and remove hin from EP . O(1)

9: if Sfe
in (hin, σ) 6= ∅ then . O(n2)

10: σ ← random σ′ ∈ Sfe
in (hin, σ) . O(1)

11: else σ ← Squeeze(hin, σ) . O(n4)
12: end if
13: if hin /∈ σ then . O(1)
14: p[hin] := p[hin] + 1 . O(1)

15: Generate Sfe
ej (hin, σ) with min p[hout] . O(n3)

16: if Sfe
ej (hin, σ) 6= ∅ then . O(1)

17: σ ← random σ′ ∈ Sfe
ej (hin, σ) . O(1)

18: Add the ejected request hout to EP . O(1)
19: end if
20: σ ← Mutate(σ, π, λ, κ) . O(λn4)
21: end if
22: end while
23: if EP 6= ∅ then σ ← σbest . θ(n)
24: else σbest ← σ . θ(n)
25: end if
26: end while
27: return best solution σbest . O(1)

In PSO [9], each particle’s position encodes m hyper-parameters (Table 1,
also in blue in Algorithm 1), and we maximize the fitness5: F = (0.5 · (K −
KB)/KB + 0.5 · τB/τ)−1, where K and τ are the number of routes and the
maximum execution time of GES with the corresponding hyper-parameters, and
KB and τB are the best-known number of routes for the corresponding instance
in the validation set V , and the best time required to converge to the solution
with K routes captured during the evolution. This fitness function allows us
to capture both functional and non-functional aspects of the algorithm (here,
in relation to the best-known routing schedules). We evolve s random particles
sampled from a uniform distribution bounded by the lower and upper parameter
limits with zero initial velocity updated in each iteration for the i-th particle:
vi ← ωvi + φprp(λ∗i − λi) + φgrg(λS − λi), where rp, rg are from a uniform
distribution U(0, 1), ω is the inertia, φp, φg are the acceleration coefficients, and
λ∗i and λS are the best i-th particle’s and best swarm’s positions visited. The
i-th particle’s position becomes λi = λi + vi. Once the evolution is finished, we
pick the best particle that corresponds to the highest-quality parameterization.

3 Experiments

We use six Li and Lim’s tests, one for the instances with clustered (c), random-
ized (r), and mixed (rc) requests, with short time windows and small vehicle

5 In PSO, the fitness function can be updated to reflect other aspects of the solutions.
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capacities (c1, r1, and rc1), and with wider windows and larger vehicles (c2, r2,
rc2). We focus on 200-request tests6, and take the first problem instance from
each group to form V . The max. time of calculating a fitness of a single particle
amounts to 12 minutes (as the max. time for GES is 2 min). We pick the best
hyper-parameters from each configuration for each run, and apply them to GES
to solve all Li and Lim’s tests (60 instances), and our 40 real-life tests of various
characteristics7. We used the Python PSO with default parameters [9], and GES
was coded in C#, and ran on Intel Xeon CPU E5-2640 v3, 2.60 Ghz, 8 GB RAM.

Table 1. The hyper-parameters of the guided ejection search.

Symbol Range Step Expert’s PSO Meaning
α [1, 10] 1 8 3 maximum tabu pool size
β [2, 4] 1 2 3 max. number of occurrences of the same entry in TP
ε [1, 1000] 1 50 616 maximum number of request ejections
π [0.0, 1.0] Cont. 0.25 0.41 mutation probability
λ [1, 200] 1 100 2 feasible number of mutations
κ [1, 10000] 1 1000 6062 maximum number of mutations

We keep the number of fitness evaluations (s · Gmax), where Gmax is the
number of generations, constant. We investigate the impact of the swarm size s
and maximum number of generations on PSO, and consider the (s,Gmax) pairs:
(12, 2), (8, 3), (6, 4), (4, 6), (3, 8), and (2, 12)—each pair was run seven times. We
confront PSO with Expert’s (the hyper-parameters determined by an expert)
and random search with 24 uniformly distributed sample points to ensure fair
comparison. We always seed the same initial solution σinit for all GES variants.

Table 2. The (a) best fitness (the best mean and median are in bold) and (b) distance
traveled by the best particle in PSO.

PSO sett.→ (12, 2) (8, 3) (6, 4) (4, 6) (3, 8) (2, 12)
mean 0.487 0.490 0.476 0.498 0.481 0.451

(a) std dev. 0.019 0.015 0.012 0.012 0.022 0.029
median 0.487 0.492 0.478 0.502 0.475 0.458
mean 0.070 0.142 0.149 0.300 0.266 0.167

(b) std dev. 0.024 0.060 0.041 0.059 0.168 0.166
median 0.078 0.159 0.174 0.317 0.243 0.082

Table 2 gathers the PSO results aggregated for all (s,Gmax) pairs. We can ob-
serve that balancing the swarm size and the maximum number of generations in
(4, 6) leads to the largest fitness values obtained over V , hence the evolutionary
process guides the particles toward high-quality parts of the solution space. The
exploration capabilities of PSO are reflected in the distance traveled by the best

6 https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/

200-customers/
7 This set and the baseline solutions are available at https://gitlab.com/tjastrzab/
iccs2022/.
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particle in the swarm: very small swarms of two particles tend to travel larger
distances, whereas larger ones, (12, 2), exploit the search space more locally, as
they likely captured well-fitted random individuals in the initial population.

In Fig. 1, we confront PSO with the manual tuning process (Expert’s) and
random sampling. Here, we present the parameterizations that lay on the Pareto
fronts, hence are not dominated by other solutions—the closer the solutions are
to the point (0, 0), the better. PSO consistently delivers hyper-parameters that
lead to faster convergence compared with those selected by a human expert,
while maintaining low K’s—the differences in K for Expert’s and (4, 6) are not
statistically significant (Friedman’s test with Dunn’s, p < 0.05). In Table 1, we
presented the best values extracted by PSO (it was delivered by the (4, 6) config-
uration with the fitness of 0.52)—they are significantly different from Expert’s.
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Fig. 1. The Pareto fronts (K vs. convergence in seconds, averaged across all instances
in the corresponding dataset) obtained for the Li and Lim’s and our test sets.

4 Conclusions

In this paper, we tackled the problem of automated parameterization of the al-
gorithms solving rich vehicle routing problems, and employed PSO to evolve the
pivotal hyper-parameters of a heuristics for minimizing routes in the PDPTW.
The experiments showed that it elaborates high-quality hyper-parameters work-
ing on par with the GES parameterization delivered by a human expert, while
allowing for faster convergence. Our current research efforts are focused on inte-
grating PSO with the famous iterated racing procedures available in irace [10].
We believe that developing the solvers with the automated process of retrieving
their desired parameterizations is an important step toward data-driven algo-
rithms that will be able to solve emerging formulations of rich VRPs.
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