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Abstract. In the era of data abundance and machine learning technologies,
we often encounter difficulties in learning data-driven discovery of hidden
physics, that is, learning differential equations/fractional differential equa-
tions via data. In [1], Schaeffer proposed a machine learning algorithm to
learn the differential equation via data discovery. We extend Schaeffer’s
work in the case of time fractional differential equations and propose an
algorithm to identify the fractional order α and discover the form of F .
Furthermore, if we have prior information regarding the set in which pa-
rameters belong to have some advantages in terms of time complexity of
the algorithm over Schaeffer’s work. Finally, we conduct various numerical
experiments to verify the method’s robustness at different noise levels.

Keywords: Fractional differential equations · Sparse optimization · Ma-
chine learning · Differential evolution.

1 Introduction

The differential equations describe many phenomena in science and engineering,
such as the Schrödinger equation, diffusion equation, a system of differential equa-
tions (SIR epidemic model), etc (see [2] and references therein). The original discov-
ery of these equations require a tremendous knowledge of physics, understanding
of theories, and supportive evidence of experimental data. This is the one way to
discover hidden physics. In recent years, researchers have provided the computa-
tional approach to data-driven discovery of hidden physics, that is, learning the
differential equations that govern a particular phenomenon only using the data.
Machine learning offers a wide range of numerical tools that efficiently learn differ-
ential equations via data discovery. Researchers in many fields have applied these
tools to discover physical law from experimental data. Raissi et al. [3] used proba-
bilistic machine learning to discover the linear differential equations. Again, Raissi
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et al. [4] introduced a physics-informed neural network to discover the non-linear
partial differential equations. Due to some issues with the regular data training in
the physics-informed neural network, Krishanpriyan et al. [5] introduced a physics-
informed neural network with some advanced training techniques to discover non-
linear partial differential equations. In the works mentioned above, authors know
the form of the differential equation, whether its diffusion or diffusion-reaction,
etc. The first time, Schaeffer [1] introduced machine learning techniques to identify
the terms in underlying partial differential equations to the best of our knowledge.
However, in [6], Srivastava et al. proposed a machine learning approach to iden-
tify the terms in underlying partial differential equations. In recent decades, the
theory of fractional derivatives has been an emerging topic in physical, life, and so-
cial sciences due to its non-local properties. The non-local properties of fractional
operators give a superior way to deal with the complex phenomena in physical,
life and social sciences (see [7] and references therein). Gulian et al. [8] extend the
Raissi et al. [3] work to find the space fractional differential equations. Pang et al.
[9] generalized the Raissi et al. [4] work to learn the space-time fractional differen-
tial equations. Recently, Singh et al. [10, 11] proposed scientific machine learning
algorithm to learn the system of fractional differential equations via data.

Motivated by the above discussions, we extend the Schaeffer [1] work for time
fractional differential equations. The primary approach used by Schaeffer is to
convert the problem into an optimization problem and then use the indirect method
to solve the optimization problem. Schaeffer used the least absolute shrinkage and
selection operator (LASSO) method, which uses the L1-norm in the regularization
term, with the help of a linear system of equations [12]. In this work, we also use
the LASSO method with the help of a non-linear system of equations and use
differential evolution to solve the LASSO method.

2 Methodology

In this section, we generalized the methodology, recently given by Schaeffer [1], in
the case of time fractional differential equations.

2.1 Sparse reconstruction of Fractional Differential Equation

We will derive the method for a fractional differential equation which has the
following form:

CD
α
0,tU(x, t) = F(U ,Ux,Uxx, · · · ,Ux···x) + G(x, t), (1)

where 0 < α < 1, CD
α
0,t denote the left-side Caputo fractional derivative of or-

der α with respect to t (for definition of Caputo see the [11]). Assume that the
form of the F and fractional order α in the above Equation are unknown to the
user, and instead user only have the data. For understanding and derivation of the
methodology, here we consider the following form:

CD
α
0,tU(x, t)− G(x, t) = F(U ,Ux,Uxx). (2)
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We can approximate the function F via a nth-order Taylor series expansion. This
approximation can be made by the user based on some physically relevant models
related to the data. Here for simplicity we take n = 2, the second order Taylor
series expansion of F about the origin can be written as:

F(U ,Ux,Uxx) ≈ F(0, 0, 0) + U ∂F
∂U

(0, 0, 0) + Ux
∂F
∂Ux

(0, 0, 0) + Uxx
∂F
∂Uxx

(0, 0, 0)

+
1

2

[
U2 ∂

2F
∂U2

(0, 0, 0) + U2
x

∂2F
∂U2

x

(0, 0, 0) + U2
xx

∂2F
∂U2

xx

(0, 0, 0)

+2UUx
∂2F

∂U∂Ux
(0, 0, 0) + 2UUxx

∂2F
∂U∂Uxx

(0, 0, 0) + 2UxUxx
∂2F

∂Ux∂Uxx
(0, 0, 0)

]
.

(3)
Using the Equation (3) in the Equation (2), we can write

CD
α
0,tU(x, t)− G(x, t) = α1 + Uα2 + Uxα3 + · · ·+ UxUxxα10, (4)

where α1 = F(0, 0, 0), α2 = ∂F
∂U (0, 0, 0), α3 = ∂F

∂Ux
(0, 0, 0), · · · , α10 = ∂2F

∂Ux∂Uxx
(0, 0, 0)

are the coefficients of the unknown in the Equation (3). We can write the above
equation as:

CD
α
0,tU(x, t)− G(x, t) = [1 U U2 Ux U2

x UUx Uxx U2
xx UUxx UxUxx].α,

where α = [α1, α2, · · · , α10]. Assume that the data of the unknowns are given to us
at the points (xj , tk), j = 1, 2, · · · , n, k = 1, 2, · · · ,m. Now, we define feature vectors
f1, f2, f3, · · · , f10 as, f1 = [1, . . . 1, . . . , 1]T , f2 = [U(x1, t) . . .U(xj , t) . . .U(xn, t)]

T ,
. . . , f10 = [Ux(x1, t)Uxx(x1, t), . . . , Ux(xj , t)Uxx(xj , t), . . . , Ux(xn, t)Uxx(xn, t)]

T .
Now the system of equations become,

V (t;α) = P (t)α, (5)

where V be the vector, which is the combination of time fractional derivative term
and source term and P be the matrix of all features vector. Let β = (α,α) are the
unknown parameter in the Equation (5). In [1], author ended with the system of
Equations (5) with α = 1, which was linear in unknown parameter. Here, we have
a non-linear equation in unknown parameter β, we can’t solve the above equation
with inverse or pseudo-inverse due to non-linearity. Also data may contains noise,
and the problem can ill-posed. To tackle the ill-posedness, we use a regularizer
with the entire data set. We use LASSO method, which is use L1-regularization to
promote the sparsity in the vector β is define as:

min
β=(α,α)

J (β) =
1

2

m∑
i=1

∥V (ti, α)− P (ti)α∥22 + λ ∥β∥1 , (6)

where λ > 0 is a regularization parameter. The issue with the Schaeffer’s approach
how to use the method in the case of a non-linear system of equations due to
fractional order. Therefore, we use differential evolution to solve the Equations (6).
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2.2 Differential Evolution

In 1996, the differential evolution method was introduced by Storn and Price [13,
11]. It is a stochastic, production-based optimization method for solving non-linear
optimization problems. We used differential evolution as an optimization method
for our problem. Let us consider the optimization problem (6). Here we aim to find
the vector β∗, which minimizes the J . Suppose population size is Np. Therefore,
the population matrix can be written as

βg
n = [βg

n,1, β
g
n,2, · · · , β

g
n,D]. (7)

Here D is the number of parameters, g is the generation and n = 1, 2, · · · , Np and
population matrix is generated with the help of prior information available of the
parameters. If we do not have any prior information regarding parameter then we
generate the population matrix with help of uniform random variable. For more
details, see [11]. Now, we describes our algorithm for learning the parameter vector
β presented in Equation (6).

Algorithm 1 Learning the parameter involve in the Equation (6)

Step 1 : With the help of given data, construct the feature matrix.
Step 2 : For the first generation, initialize the population matrix, and initialize all other
parameters.
Step 3 : Execute the mutation and crossover steps for the given population.
Step 4 : With the help of LASSO operator evaluate error values for all the population
members.
Step 5 : Execute the selection step with the help of error values.
Step 6 : Until the population members lie under a specific threshold value, repeat steps
2-5.
Step 7 : When population converges, return the final value.

3 Simulations and Numerical Experiments

In this Section, we illustrate the methodology which we have discussed in Section
2 with the help of the following three test Examples. The first two Examples show
algorithm robustness at different level of noise. The third Example shows the ad-
vantage of the algorithm in the case of prior information regarding the parameters.
The simulations were run on an Intel Core i5− 1135G7, 1.80GHzx4 machine with
16GB RAM.

Example 31 Consider the time fractional diffusion equation

CD
α
0,tU(x, t) = Uxx(x, t) + G(x, t), (8)

G(x, t) = 24

Γ (5− α)
t4−α sinπx, U(x, 0) = 0, U(0, t) = 0, and U(1, t) = 0.

It can be checked that for α = 0.5, U(x, t) = t4 sinπx be the exact solution of
(8). Data is generated with the help of the exact solution of the equation with
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Table 1: The identified terms and α for Example 31 at different level of noise.
α Identified Term Coefficients

No Noise 0.4942 Uxx 0.9996

2% Noise 0.4879 Uxx 1.0000

5% Noise 0.4851 Uxx 1.0000

the 200 × 200 grid points and the feature matrix are obtained using third order
Taylor’s series expansion. Table 1 demonstrate the result of identifying the terms
and fractional order in the underlying time fractional diffusion equation at different
noise level. From the Table 1, one can observe that our proposed algorithm for
identifying the time fractional diffusion equation is robust to noise. Figure 1 shows
that the learned dynamic of G(x, t) is close to the original G(x, t) at a different
noise level due to the learned fractional order.

Example 32 Consider the time fractional Burgers equation

CD
α
0,tU(x, t) = U(x, t)Ux(x, t) + 0.1Uxx(x, t) + G(x, t), (9)

G(x, t) = 10

Γ (2− α)
t1−α sinπx− 100t2π sinπx+ 10t2π2 sinπx,

U(x, 0) = 0 = U(0, t) = U(1, t).

Table 2 demonstrate the result of identifying the terms and fractional order in the
underlying time fractional Burgers equation at different noise level. Since the diffu-
sion term’s coefficient (viscosity) is small compared to the other term coefficients,
from Table 1, one can observe that the viscosity term identifies as correctly as
other terms involved in the time-fractional Burgers equation. Hence, our algorithm
is efficient in identifying the terms having the coefficient with large value as well
as terms having comparatively small value.
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(a) Exact G(x, t)
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(b) Identified G(x, t)
with 2% noise
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(c) Identified G(x, t)
with 5% noise

Fig. 1: Exact and Identified G(x, t) with different level of noise.

Example 33 Consider the time fractional advection diffusion equation

CD
α
0,tU(x, t) = Ux(x, t) + Uxx(x, t), (10)
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Table 2: The identified terms and α for Example 32 at different level of noise.
α Identified term Coefficient

No Noise 0.4997 UUx,Uxx 0.9999,0.1001

2% Noise 0.4998 UUx,Uxx 0.9997,0.1001

5% Noise 0.4995 UUx,Uxx 0.9998,0.1003

U(x, 0) = e2x, U(0, t) = e6t, and U(1, t) = e2+6t.

For simplicity we take α = 1 and it can be checked that U(x, t) = e2x+6t be the exact
solution of (10). In this example, we will show the efficiency of our algorithm in the
two cases: First, if we have prior information regarding coefficients of the terms in
underlying advection-diffusion equations, whether it is a real number or integers.
Second, if we do not have any information regarding coefficients. Assuming the

Table 3: The identified terms, CPU time and number of iteration required to con-
vergence for Example 33 with two cases.

Have prior information Do not have information

Iteration CPU time Term Coefficient Iteration CPU time Term Coefficient

14 13.52 Ux,Uxx 1,1 578 530.55 Ux,Uxx 1 ,1

coefficients of the term in the underlying advection-diffusion equation are integers
(one can observe from the Equation (10)), while in the second case, we do not
have any information regarding coefficients then the algorithm changes accordingly.
Table 3 demonstrates the result of identifying the terms in the underlying time
fractional advection diffusion equation, CPU time in second, and the number of
iterations required to the convergence of the algorithm in the two cases. From
the Table 3, one can observe that when we have some information regarding the
coefficients of the term, our algorithm converges very fast compared to the second
case. In the Schaeffer [1] approach we do not have this kind of advantage.

4 Conclusions

To summarize, this work introduces a computational framework based on LASSO
method and differential evolution to discover the time fractional differential equa-
tions. This work is an extension of the recent study done by Schaeffer [1] to the case
of time fractional differential equations. In [1], the author used the indirect opti-
mization method to solve the optimization problem. The issue with [1] is how to use
the method in the case of a non-linear system of equations due to fractional order.
To address this issue in this paper, we have used the direct optimization method
(differential evolution). An extension of this study could be generalizing this work
for time-space fractional differential equations, which remains a major conceptual
challenge due to fractional Taylor series approximation and space fractional order.
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