Auto-scaling of scientific workflows in Kubernetes

1[0000—0002—3082—4209]

Bartosz Balis , Andrzej Broniski', and Mateusz Szarek!

! AGH University of Science and Technology,
Institute of Computer Science, Krakow, Poland
balis@agh.edu.pl

Abstract. Kubernetes has gained extreme popularity as a cloud-native
platform for distributed applications. However, scientific computations
which typically consist of a large number of jobs — such as scientific
workflows — are not typical workloads for which Kubernetes was designed.
In this paper, we investigate the problem of autoscaling, i.e. adjusting the
computing infrastructure to the current resource demands. We propose
a solution for auto-scaling that takes advantage of the known workflow
structure to improve scaling decisions by predicting resource demands
for the near future. Such a predictive autoscaling policy is experimentally
evaluated and compared to a regular reactive policy where only the
current demand is taken into account. The experimental evaluation is
done using the HyperFlow workflow management systems running five
simultaneous instances of the Montage workflow on a Kubernetes cluster
deployed in the Google Cloud Platform. The results indicate that the
predictive policy allows achieving better elasticity and execution time,
while reducing monetary cost.

Keywords: scientific workflows, auto-scaling, Kubernetes

1 Introduction

Kubernetes is a container orchestration system which has gained extreme popu-
larity as a universal platform for management of complex distributed applications.
However, scientific computations, in particular scientific workflows which are
large graphs of tasks [7] — are not typical workloads for which Kubernetes was
designed. We propose and evaluate a solution for auto-scaling of Kubernetes
clusters tailored to scientific workflows. The main contributions of this paper are
as follows: (1) two auto-scaling policies specific for scientific workflows and Kuber-
netes — reactive and predictive — are proposed and implemented. (2) The policies
are experimentally evaluated and compared to a standard Cluster Autoscaler,
using the HyperFlow Workflow Management System [1] running a workload of
multiple large scientific workflows on a Kubernees cluster consisting of 12 nodes
with 96 cores.

The paper is organized as follows. Section 2 presents related work. Section
3 presents the proposed solution for predictive autoscaling. Section 4 contains
experimental evaluation of the solution. Section 5 concludes the paper.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-031-08754-7_5 |

https://dx.doi.org/10.1007/978-3-031-08754-7_5

2 Related Work

The basic method of scaling is reactive [2], wherein a scaling manager adjusts
resource allocation to their actual use, based on such metrics as the number of
requests per minute, or the number of active users.

Several autoscaling approaches for scientific workflows have been proposed in
the context of cloud infrastructures, e.g. using AWS Spot instances [9]. Cushing
et al [3] introduce a scaling policy that relies on prediction of task execution
times and estimates future demand based on the currently queued tasks. Versluis
and others [10] compare several scaling policies using trace-based simulation.

Unlike the autoscaling policies for general applications, specific policies can
be applied to graphs of tasks. In [6], two such policies — Plan and Token are
proposed. The first one makes predictions and partial analysis of execution — so
it requires knowledge of the graph structure and estimates for individual tasks.
The second policy only uses information about the structure of the graph to
estimate its Level of Parallelism. Although the quality of the estimation in the
Token policy strongly depends on the structure of the graph, the paper [4] shows
that it brings significant results for popular computational tasks. The work [5]
presents an autoscaler of the Performance-Feedback type based on the Token
policy, which supports many simultaneously running workflows, and also shows
the integration architecture with Apache Airflow.

In summary, no existing work investigated auto-scaling of scientific workflows
specifically in the context of Kubernetes using in-situ experimental evaluation.

3 Auto-scaling scientific workflows in Kubernetes

We adopt a solution wherein the autoscaling process can be viewed as a MAPE
loop [8] consisting of four steps: (1) Monitoring — collecting information about the
state of the cluster and the workflow execution state; (2) Analysis — predicting
the future execution state and resource demands; (3) Planning — finding the
best scaling action that accommodates the predicted workload; (4) Ezecution —
performing the scaling action.

3.1 Monitoring

The basis of the autoscaler operation is the awareness of the current state of the
cluster and the computations. We use the SDK A PI to retrieve information about
Pods and Nodes, where the former determine the current demand for resources,
and the latter their current supply. The demand for resources is calculated based
on the resource requests of the Kubernetes Pods that run workflow tasks, so as to
match the algorithm used by the Kubernetes scheduler. The supply of resources
is the total amount of CPU and memory available on the worker nodes, reduced
by the resources reserved by the Kubernetes components (e.g. Kubelet).

The workflow execution status is tracked through the events emitted by
the HyperFlow workflow management system which we use to experimentally
evaluate the autoscaling policies.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-031-08754-7_5 |

https://dx.doi.org/10.1007/978-3-031-08754-7_5

3.2 Analysis

The purpose of this step is to determine the demand for resources in the near
future. To this end, a given time period, e.g. 5 minutes, is divided into smaller time
frames, e.g. seconds, and each frame is assigned a specific amount of resources.
To estimate how much resources are needed in the upcoming time frames, we
simulate the further execution of currently running workflow graphs
using the method described in [6], so as to predict which tasks will be running
in parallel in a given time frame. An illustration of the analysis process is
presented in Fig. 1.

fask1 | cpPu:i

| I RAMi2GB
task2 | cpu:3
T RAM1GB
i i E E : | time (s)
0 T 7 T3 It 5>
CPU:1 CPU:- 4 CPU: 4 CPU: 3 CPU- O
RAM: 2 GB RAM: Z GB RAM: 3 GB RAM: 1 GEB RAM:0 GB

Fig.1: Analysis of resource requests in time frames.

To calculate the demand for resources, we use the CPU and memory requests
of the containers, in a similar way they are used by the Kubernetes scheduler.
To take into account both CPU and memory requirements at the same time, we
need to combine these two measures that have completely different units. To
this end, both CPU and memory utilization are expressed as a percentage of the
respective available resources and then added up.

3.3 Planning

The purpose of the planning step is to determine which action will be the most
beneficial: scaling up or down by a certain number of machines, or perhaps
no scaling. The outcomes of all possible decisions are checked within a given
time limit, at specified time intervals (e.g. 5-frame sampling). The number of all
combinations — decisions about how to scale and when — is the product of the
maximum number of machines and the number of samples within the time limit.
This number is sufficiently small so that all combinations can be checked.

Each combination is assigned a value of S (score), which represents how far
the scenario deviates from an optimal match of resource demands and supplies.
The deviation from the optimal resource allocation — either in the form of

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-031-08754-7_5 |

https://dx.doi.org/10.1007/978-3-031-08754-7_5

underprovisioning or overprovisioning — of resource res is given by formula 1.
There, supply is the value of the supply of resource res in the cluster taking into
account the scaling action, and demand is the demand for resource res.

demandres - Supply’res
Dres = |

demand,es | (L)
Additionally, in frames where one of the resources is over- and the other is
underprovisioned, the value of D is set to 0, so as to optimize runtime while
accepting an additional cost.
The score S is then calculated, using formula 2, as a mean value of all resource
over- and undersupplies over n time frames.

Umem: + UC U4 Omem, + OC U4
D (T, e (2)

For each configuration (scaling decision), we also estimate its resulting mon-
etary cost. Whenever two configurations are equal in terms of score, we choose
one with a lower cost.

3.4 Execution

The final step is performing the scaling action, and this is done via the API of
a given cloud provider. Due to the fact that scaling may take several minutes,
the execution is asynchronous, i.e. we do not wait for information about the
completion of scaling. To eliminate too frequent scaling attempts, after a scaling
action we impose a scaling cooldown period, e.g. 2 minutes, during which no
scaling actions are allowed.

3.5 Autoscaling policies — reactive vs. predictive

In order to evaluate the impact of leveraging the knowledge of the workflow
structure on the quality of scaling, we distinguish two autscaling policies. In the
reactive policy, we assume that the future demand for resources is identical to
the current one, so the planning phase simply adapts to the current situation.
With the predictive policy, on the other hand, knowledge of the workflow
structure is used to estimate future demand, as described in section 3.2.

4 Evaluation

To evaluate the proposed predictive autoscaling algorithm, we experimentally
run the same workload using three different configurations: (1) reactive pol-
icy, (2) predictive policy, (3) standard Cluster Autoscaler (which uses its own
implementation of a reactive policy).

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-031-08754-7_5 |

https://dx.doi.org/10.1007/978-3-031-08754-7_5

4.1 Experiment setup

To run the experiments, we used the Google Cloud Platform (GCP), with a Ku-
bernetes cluster consisting of one master node to run the HyperFlow components,
and a pool of worker nodes, using the ni-highcpu-8 machine type, scalable from 1
to 12 nodes (up. to 96 cores).

Let us note that when the scaling action is performed, Kubernetes may try to
stop a Pod and start it on another machine. In line with our assumptions, we
care first about time and secondly about the budget. Thus, we define PodDisrup-
tionBudget for all tasks, which consequently blocks the removal of the machine
until all previously started tasks are finished.

The test workload was the Montage (degree 2.0). The experimental workload
consisted of 5 instances of this workflow running simultanoeusly. The details
are shown in Table 1. The CPU requests were set to 0.5 for mDiffFit and
mBackground tasks and to 1.0 for all the others. The memory request was set to
256 MiB for all tasks.

Task type (agglomeration) [Count Task type (agglomeration) [Count
mProject (3x / 3s) 1535 mImgtbl 5
mDiffFit (12x / 6s) 4310 mAdd 5
mConcatFit 5 mShrink 5
mBgModel 5 mJPEG 5
mBackground (12x / 4s) [1535

Table 1: Experimental workload — 5 instances of the Montage workflow.

HyperFlow supports agglomeration (clustering) of tasks to reduce the overhead
of starting excessively many Pods. In the case of Montage, tasks for the three
parallel stages — especially mDiffFit and mBackground — are rather short, so
that Pod creation time (typically about 2s) can introduce a significant overhead.
Configuration of task agglomeration is also shown in Table 1. For example, 12z /
6s means that HyperFlow will submit the tasks of a given type in batches of 12,
but the maximum wait time to form a batch is 6 seconds.

4.2 Results

Fig. 2 shows the visualization of the execution traces of the experimental workload,
along with cluster scaling, for the React and Predict policies, respectively. Because
of space limitations, a similar visualization for the CA-based execution is not
shown. However, Table 2 summarizes the key metrics for all three cases (CA,
React and Predict): total execution time and the cost of execution.

It can be seen that the two executions of the experimental workload, respec-
tively driven by the React and Predict policies, are quite different. The Predict
policy results in more scaling decisions overall. The visualization of the execution
trace for the Predict policy looks less ‘compact’ but this is only due to the fact
that in total 22 different nodes are involved in the execution with the Predict
policy, compared to 13 nodes for the React policy.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-031-08754-7_5 |

https://dx.doi.org/10.1007/978-3-031-08754-7_5

Node identifier

Cluster scaling

12
2
10 u
0
B
B
s
.
2
2000 6000

Cluster scaling

Number of machines
Number of machines

o N & o

o 1000 2000 3000 4000 5000

time (s)
time (s) ©

(a) Predict policy. (b) React policy.

Fig. 2: Execution of the experimental workload.

Montage-Degree 2. 0‘react(CA)‘predict‘ react‘

Execution time [s] | 6000 | 5709 |6837
Cost 9] 705 | 4.53 [6.95

Table 2: Experiment results summary for different auto-scaling policies.

The results indicate that the Predict policy performed significantly better
than both CA and React ones. Not only the achieved execution time was the
shortest (better by 5% compared to the second best CA policy), but it resulted in
the lowest cost of execution ($4.53 compared to ~ $7 for the two other policies).
It is reasonable to conclude that with the execution time of about 100 minutes,
the overhead of starting and shutting down more nodes was not significant.

Another interesting observation is that our implementation of the reactive
policy performed significantly worse than the policy of the standard Cluster
Autoscaler. While this is not the key result of the experiment, the reasons for
this will be the subject of future investigation.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-031-08754-7_5 |

https://dx.doi.org/10.1007/978-3-031-08754-7_5

5 Conclusions and Future Work

Autoscaling enables elastic resource allocation which meets the current demands,
avoiding undesirable underprovisioning (hurting performance) or overprovisioning
(increasing cost) of resources. We presented an autoscaling solution for running
scientific workflows in a Kubernetes cluster. The proposed autoscaling policy was
designed to take advantage of the knowledge of the workflow structure in order to
predict the resource demands in the near future and thus, hypothetically, achieve
better scaling decisions than a reactive policy. This hypothesis was confirmed
experimentally.

Future work involves further experiments with different types of workflows and
investigation of the impact of various factors on the execution and autoscaling,
such as fine-tuning of resource demands of workflow tasks.

Acknowledgements. The research presented in this paper was partially supported by
the funds of Polish Ministry of Education and Science assigned to AGH University of
Science and Technology.

References

1. Balis, B.: Hyperflow: A model of computation, programming approach and en-
actment engine for complex distributed workflows. Future Generation Computer
Systems 55, 147 — 162 (2016)

2. Chieu, T.C., Mohindra, A., Karve, A.A., Segal, A.: Dynamic scaling of web appli-
cations in a virtualized cloud computing environment. In: 2009 IEEE International
Conference on e-Business Engineering. IEEE (2009)

3. Cushing, R., Koulouzis, S., Belloum, A.S., Bubak, M.: Prediction-based auto-scaling
of scientific workflows. In: Proceedings of the 9th International Workshop on
Middleware for Grids, Clouds and e-Science. pp. 1-6 (2011)

4. Ilyushkin, A., Ghit, B., Epema, D.: Scheduling workloads of workflows with unknown
task runtimes. In: 2015 15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing. pp. 606-616 (2015)

5. Ilyushkin, A., Bauer, A., Papadopoulos, A.V., Deelman, E., Tosup, A.: Performance-
feedback autoscaling with budget constraints for cloud-based workloads of workflows.
CoRR abs/1905.10270 (2019), http://arxiv.org/abs/1905.10270

6. Ilyushkin, A., et al.: An experimental performance evaluation of autoscaling policies
for complex workflows. p. 75-86. ICPE 17, ACM (2017)

7. Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., Vahi, K.: Char-
acterizing and profiling scientific workflows. Future generation computer systems
29(3), 682-692 (2013)

8. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling tech-
niques for elastic applications in cloud environments. Journal of Grid Computing
12(4), 559-592 (12 2014)

9. Monge, D.A., Gari, Y., Mateos, C., Garino, C.G.: Autoscaling scientific workflows
on the cloud by combining on-demand and spot instances. Computer Systems
Science and Engineering 32(4), 291-306 (2017)

10. Versluis, L., Neacsu, M., Iosup, A.: A trace-based performance study of autoscaling
workloads of workflows in datacenters. In: 2018 18th IEEE/ACM Int. Symposium
on Cluster, Cloud and Grid Computing (CCGRID). pp. 223-232. IEEE (2018)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-031-08754-7_5 |

http://arxiv.org/abs/1905.10270
https://dx.doi.org/10.1007/978-3-031-08754-7_5

