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Abstract. Modelling the trajectorial motion of humans along the ground
is a foundational task in the quantitative analysis of sports like associ-
ation football. Most existing models of football player motion have not
been validated yet with respect to actual data. One of the reasons for
this lack is that such a validation is not straightforward, because the
validation typically needs to be performed with respect to noisy extreme
values rather than expected values.
This paper proposes a validation routine for trajectorial motion models
that measures and optimises the ability of a motion model to accurately
predict all possibly reachable positions by favoring the smallest predicted
area that encompasses all observed reached positions up to a manually
defined threshold. We demonstrate validation and optimisation on four
different motion models, assuming (a) motion with constant speed, (b)
motion with constant acceleration, (c) motion with constant acceleration
with a speed limit, and (d) motion along two segments with constant
speed. Our results show that assuming motion with constant speed or
constant acceleration without a limit on the achievable speed is partic-
ularly inappropriate for an accurate distinction between reachable and
unreachable locations. Motion along two segments of constant speed pro-
vides by far the highest accuracy among the tested models and serves as
an efficient and accurate approximation of real-world player motion.

Keywords: Football · Positional data · Motion models · Performance
analysis · Model validation · Complex systems

1 Introduction

Recently, professional association football has seen a surge in the availability of
positional data of the players and the ball, typically collected by GPS, radar or
camera systems. The growing availability of such data has opened up an exciting
new avenue for performance analysis. High-quality measures of performance that
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include positional information are invaluable for effective training, opposition
scouting, and player recruitment.

The modelling of human motion is a foundational component of many perfor-
mance metrics based on positional data. For example, algorithms that compute
space control [7] or simulate passes [6] implicitly or explicitly make assumptions
about human kinematics. These kinematic assumptions have never been verified
so far, which calls the validity of these assumptions and the resulting models
into question.

Rather than predicting actual human motion, many applications merely re-
quire the prediction of possibly reachable positions. This requirement essentially
shifts the purpose of a motion model from predicting expected positions towards
estimating the most remote reachable positions. Estimating such extreme values
from real-world data can be difficult, because extreme values are typically rare
and particularly likely to include a component of measurement error with an
often unknown distribution that cannot easily be accounted for.

The contributions of this paper are twofold: First, we formally propose a
validation routine for the quality of player motion models. Second, we use this
routine to evaluate and optimise the parameters of four models of motion.

The rest of this paper is structured as follows: Section 2 provides some back-
ground on motion models in football and their validation. Section 3 formally
presents our validation routine. Section 4 describes our exemplary model valida-
tion and optimisation based on a real data set and discusses its results. Section 5
summarises the contributions of this paper and points out possible directions of
further research.

2 Motion models in football: state of the art

Assumptions about the trajectorial motion of players are inherent to many per-
formance indicators within the analysis of sports games. One example is the
commonly used concept of space control which assigns control or influence over
different areas on the pitch to players. It is used, for example, as a context vari-
able to rate football actions [5] and for time series analyses [3]. Controlled space
is often defined as the area that a player is able to reach before any other player,
given a specific model of motion for each player. Commonly used for this pur-
pose are motion models assuming constant and equal speed, which results in a
Voronoi partition of the pitch, or accelerated movement with limited speed [7].
Spearman et al. [6] assume accelerated player motion with a limit on acceleration
and velocity in the context of modeling ground passes.

Motion models have also been estimated directly from positional data [1,
2]. However, such empirical models can be computationally expensive, prone
to outliers and their current versions lend themselves less naturally to extreme
value estimation than theoretically derived models. Attempts to validate trajec-
torial player motion models are rare. Notably, Caetano et al. [2] performed a
validation of their space control model, and thus indirectly also the underlying
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motion model, by checking how many future positions of players fall within their
associated controlled area for a number of time horizons.

3 Player motion model and validation procedure

We propose a validation procedure rating a player motion model on how well
it fits some real positional data. In order to abstract our validation procedure
from the underlying positional data, we introduce the concept of a trail. A trail
represents a slice of a player’s trajectory over some duration ∆t. Formally, a trail
is defined as the quadruple: (x⃗0, v⃗0, x⃗t, ∆t)

– x⃗0: (2D) position of a given player at some arbitrary time t0
– v⃗0: (2D) velocity of the player at time t0
– x⃗t: (2D) position of the player at time t = t0 +∆t
– ∆t: time horizon (predefined)

Since every reached position is trivially contained in a large enough area,
the validation function should take not only correctness but also precision of the
model into account. The correctness of a motion model measures its ability to
make true predictions, i.e. to predict reachable areas that contain the true target
position x⃗t. Precision refers to how well narrowed-down the predicted areas of a
model are. There is a trade-off relationship between correctness and precision.

3.1 Measuring Correctness.

Considering only a single trail, a motion model m makes a prediction for the
reachable area using x⃗0, v⃗0 and ∆t. If x⃗t is contained in the predicted reachable
area, the model has made a correct prediction. Following this logic, a motion
model achieves the highest possible correctness if and only if for every trail, the
model predicts a reachable area in which x⃗t is contained. The ratio between the
number of correct predictions ncorrect and the number of total predictions ntotal

of a model m for a sample of trails T will be called hit_ratio.

hit_ratio(m,T ) =
ncorrect

ntotal
(1)

We can use the hit_ratio of a model as an indicator for its correctness. A high
hit_ratio corresponds to a high correctness and vice-versa.

3.2 Measuring Precision.

In the context of this paper, the precision of a motion model represents how
much it narrows down the reachable area of a player. Smaller reachable areas
imply a higher precision of the model and are generally preferable, given an equal
hit_ratio.

To determine the precision of a model across multiple evaluated trails, we
use the inverse of the mean surface area of all correctly predicted reachable
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areas. Incorrect predictions, where the target position x⃗t is not contained in
the predicted reachable area are excluded from this average, since the precision
of a model would otherwise increase inappropriately for very narrow, incorrect
predictions. The precision of model m across a sample of trails T is given by:

precision(m,T ) =
1

1

ncorrect
·∑ areascorrect

=
ncorrect∑
areascorrect

(2)

where
∑

areascorrect is the sum of all correctly predicted reachable areas.

3.3 Defining an overall Validation Score.

Since we aim for a single numerical value as a score for player motion mod-
els, correctness and precision have to be balanced in some way. Due to the fact
that some measurement-related extreme outliers can usually be expected in po-
sitional data from football games, a model with a hit_ratio of 100% might not
necessarily be desirable. Therefore, we introduce a minimum level of correct-
ness hit_ratiomin, which represents a minimal required ratio between correct
and total predictions of a model. We propose that if a motion model m satisfies
the condition hit_ratio(m,T ) ≥ hit_ratiomin for a trail sample T , the exact
hit_ratio(m,T ) should be indifferent for the overall validation score of m. This
way, extreme outliers in the positional data caused by measurement-related er-
rors have no influence on the validation score, as long as hit_ratiomin is chosen
adequately.

Consequently, for a motion model m that exceeds hit_ratiomin, the valida-
tion score is only determined by the precision of the model (2). We define the
score of a motion model m with the sample of trails T as:

score(m,T ) =

{
0 if hit_ratio(m,T ) < hit_ratiomin

precision(m,T ) else
(3)

The score measures how well a motion models fits a sample of positional data.
hit_ratiomin can be considered a free parameter of this validation procedure.
It should be chosen to accommodate for the error distribution of the positional
data.

4 Experiment & Evaluation of results

4.1 Data set

For the evaluation, we use the public sample data set provided by Metrica Sports
which consists of three anonymised games of football [4]. The positional data
has been collected using a video-based system and is provided at a frequency
of 25 Hz. For this experiment, we use a constant time horizon of ∆t = 1s
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Fig. 1. Exemplary boundaries of the reachable area defined by different motion models

when the player starts at x⃗0 = 0⃗ with velocity v⃗0 =

[
5m

s

0

]
. The time horizon is ∆t = 1s.

After visual inspection of the data, the minimal required hit ratio is set to
hit_ratiomin = 99.975%. We evaluate the models on a random sample of 5 · 105
trails across all three games and all participating players.

4.2 Preparation of motion models

We optimize and evaluate the following models of motion where each one de-
fines a reachable area, depending on specific parameter values. These areas are
exemplarily visualized in Figure 1.

(a) Constant speed: Motion with constant speed vmax in any direction
(b) Constant acceleration: Motion with constant acceleration amax in any direc-

tion
(c) Constant acceleration with speed limit: Motion with constant acceleration

amax in any direction until a maximal speed vmax is reached
(d) Two-segment constant speed: Motion along two segments of constant speed.

During the first segment, the player is simulated to run in the direction
of v⃗0 with constant speed vseg1 which is set to either |v⃗0| or to some fixed
value vconst, depending on the boolean parameter keep_initial. During the
second segment, the speed of the player is set to either vconst or min(vseg1+
amaxtinert, vmax), depending on whether the parameters amax and vmax are
set.

Using the evaluation routine outlined in section 3, we find the optimal param-
eter configuration for each model via Bayesian optimization. Discrete parameters
like keep_initial are handled by performing one round of Bayesian optimisa-
tion for each combination of discrete parameter values and using the best score
across those results.

4.3 Evaluation of results

The performance of the optimised models (a) - (d) and their parameter values
are shown in Figure 2.
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Fig. 2. Comparison of the performance of the four models (a) - (d) with their optimised
parameter values.

The constant-speed model (a) unsurprisingly shows a weaker performance
(score−1 = 218m2) than the more sophisticated models (c) and (d), since it
does not factor in the initial kinematic state of the player.

The naive constant acceleration model (b) (score−1 = 344m2) performs even
worse than model (a), likely because it makes the unrealistic assumption that the
possible magnitude of acceleration is independent of the magnitude and direction
of a player’s current velocity. This implies in particular that for high speeds, the
amount of reachable space in the direction that a player is moving towards will
be heavily overestimated since the model assumes that the player’s speed can
increase unboundedly.

The model assuming constant acceleration with a speed limit (c) (score−1 =
144m2) outperforms models (a) and (b). However, the optimised value of the
maximally possible acceleration of a player amax is physically unrealistic. A
value of amax = 19.42m

s2 assumes that a player can accelerate from zero to
the top speed vmax = 8.91m

s (= 32.08km
h ) within about half a second, which is

implausibly fast. Therefore, the model still overestimates the reachable area.
The two-segment constant speed model (d) (score−1 = 71.7m2) is able to

account for all reachable positions by predicting only about half the area of
model (c). It successfully narrows down the area that a player can reach within
one second to a circle with an average radius of 4.8 meters which is highly ac-
curate. Model (d) not only achieves the best score in our evaluation, but is also
mathematically simpler than model (c). For that reason, it is also computation-
ally more efficient across the various tasks that motion models are used for, like
the computation of reachable areas or the shortest time to arrive at a specific
location.

5 Conclusion

We presented a novel approach to the validation and optimisation of models
of trajectorial player motion in football and similar sports. We also presented
an empirical comparison of the accuracy of various such models. While more
sophisticated kinematic assumptions tend to be reflected in better predictive
performance, the best-performing model is our proposed approximate model
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which assumes motion along two segments with constant speed. Using this model
allows researchers to compute complex performance indicators more efficiently
and accurately over large data sets.

The validation and optimisation approach described in this paper can be
applied to data with arbitrary distributions of measurement error. However, this
is also a disadvantage, since the threshold for the amount of outliers that are
attributed to measurement error has to be determined manually. This threshold
also has to be set for each distinguished population, depending on the frequency
of extrema and the distribution of measurement error in the population. For
example, if motion models are individualized, it would be misleading to use
the same threshold for goalkeepers and outfield players, because goalkeepers
produce far less positional extrema and thus outliers. As a solution, one could
contextualize validation and optimization with various thresholds or derive an
optimal threshold from a known error distribution.

In the future, we plan to search for motion models that further exceed the
presented ones in accuracy and computational efficiency. A key towards this
goal is to estimate motion models from positional data. Many problems ad-
dressed in this paper are mirrored in empirical model fitting, for example the
need to exclude outliers and the lack of generalisability across populations [1].
In the context of validation, empirical models can serve as a highly informative
benchmark to reveal how well theoretical models are able to approximate actual
human motion.
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