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Abstract. The paper presents a new modification of the fast paramet-
ric integral equations system (FPIES) by application of interval numbers
and interval arithmetic in solving potential 2D boundary value problems
with complex shapes. Obtained interval modified fast PIES is used to
model the uncertainty of measurement data, which are necessary to de-
fine boundary shape. The uncertainty was defined using interval num-
bers and modelled using modified directed interval arithmetic previously
developed by the authors. The reliability and efficiency of the interval
modified fast PIES solutions obtained using such arithmetic were ver-
ified on 2D complex potential problems with polygonal domains. The
solutions were compared with the interval solutions obtained by the in-
terval PIES. All performed tests indicated high efficiency of the interval
modified fast PIES method.
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1 Introduction

One of the robust numerical tools for solving boundary value problems (BVPs)
is the parametric integral equations system (PIES) [1]. The method was success-
fully used to solve many different problems (e.g. [2, 3]). The disadvantages of the
PIES connected with the generation of dense non-symmetric coefficient matrices
and with the method of solving the final system of algebraic equations (Gaussian
elimination) were fixed by the application of the fast multipole method (FMM)
[4]. Obtained fast PIES (FPIES) [5, 6] significantly reduced the computation
time, as well as the problem of huge random access memory (RAM) utilization.

The authors of this paper also developed the interval PIES (IPIES) [7], which
is used to solve uncertainly defined problems. It is known, that in modelling and
solving BVPs the shape of the boundary, boundary conditions and some pa-
rameters of the considered domain (i.e. material properties) should be defined.
In practice, to obtain these data we should measure some physical quantities.
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However, even the most precise measurement is not exact - inaccuracy of mea-
surement instruments, gauge reading error or approximations of the models used
in the analysis of measurements affect the accuracy of determining the physical
quantity.

It should be noted, that the direct consideration of uncertainty in classical
mathematical models is not possible - they required exact values of the data.
However, in the literature, we can find a lot of modifications of known methods
considered uncertainty (e.g. [8–10]). One of them is connected with the appli-
cation of interval numbers and interval arithmetic to the method of modelling
and solving uncertainly defined BVPs. Therefore, it was used in the interval
finite element method (IFEM)[11] and the interval boundary element method
(IBEM)[12], as well as the IPIES.

In general, either in IFEM or IBEM the uncertainty of the boundary shape
is not considered (only material parameters or boundary conditions). Only in a
few papers, some parameters of the shape (such as radius or beam length) were
uncertainly defined. In the IPIES all uncertainties can be considered simultane-
ously [13]. Although the IPIES has advantages inherited from the PIES, such as
the way of defining the boundary connected with a small number of interval con-
trol points, there are also some disadvantages. Unfortunately, the application of
interval arithmetic and interval numbers made computations slower and utilized
more RAM than in the PIES. Therefore, solving complex (large-scale) uncer-
tainly defined problems required a combination of the IPIES and the FPIES.

The main goal of this paper is to present the interval modified fast PIES
(IFPIES) applied for numerical solving of 2D potential complex BVPs with
uncertainly defined boundary shapes. The application of interval arithmetic and
interval numbers into the FPIES was required to obtain the new method for
modelling and solving uncertainly defined problems. The efficiency and accuracy
of the IFPIES are tested on the potential problems with polygonal domains.

2 Modelling uncertainty of the boundary shape

Direct application of either classical [14] or directed [15] interval arithmetic for
modelling boundary problems with uncertainly defined boundary shapes is very
troublesome as presented in [13]. The main problem is the consideration of unre-
alistic problems as a result of the lack of continuity between boundary segments.
Modelling the same boundary shape in different quadrants of the Cartesian coor-
dinate system gives different results. Therefore, the authors proposed to modify
the directed interval arithmetic by mapping arithmetic operators to the positive
semi-axis as clearly described in [13].

In this paper, for modeling uncertainly defined boundary shape, linear seg-
ments in form of interval Bézier curves of the first degree are used:

Sk(s) = (1− s)Pb(k) + sPe(k), 0 ≤ s ≤ 1 (1)

where Sk(s) = {S(1)
k (s),S

(2)
k (s)}, k = {1, 2, ..., n} - the number of segments

created boundary, s - variable in parametric reference system, (1) and (2) - the
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direction of coordinates in 2D Cartesian reference system, Pb(k),Pe(k) - interval
endpoints which define interval Bézier curves as presented in Fig. 1.

 

x
(2)

x
(1)

Pe(k)=Pb(k+1) Pe(k+1)

Pb(k)

Fig. 1. The interval Bézier curve of the first degree used to define a segment of the
boundary in the IPIES

3 The interval modified fast PIES (IFPIES)

The FPIES for 2D potential problems [5] was obtained as the result of modifica-
tion of the PIES. It includes the modification of the PIES kernels to allow for the
Taylor series approximation used by the FMM. Also, the tree used by the FMM
was modified to properly include the way of defining the boundary in the PIES
[16]. IFPIES is obtained similarly to the FPIES. However, the application of the
modified directed interval arithmetic and interval numbers is not trivial. Some
variables should be defined as complex intervals, i.e. either real or imaginary
part of a complex number is treated as an interval.

The basic form of the IFPIES formula is similar to the FPIES [5], however
most variables are defined using interval numbers similarly to the IPIES [7]:

1

2
ul(ŝ) =

n∑
j=1

R

{ sj∫
sj−1

Û
∗(c)
lj (ŝ, s)pj(s)J

(c)
j (s)ds

}
−

−
n∑

j=1

R

{ sj∫
sj−1

P̂
∗(c)
lj (ŝ, s)uj(s)J

(c)
j (s)ds

}
,

l = 1, 2, ..., n, sl−1 ≤ ŝ ≤ sl, sj−1 ≤ s ≤ sj ,

(2)

where: ŝ and s are defined exactly in the parametric coordinate system, sj−1
(sl−1) correspond to the beginning and sj (sl) to the end of interval segment Sj

(Sl), n is the number of parametric segments that creates boundary of domain

in 2D, Û
∗(c)
lj (ŝ, s) and P̂

∗(c)
lj (ŝ, s) are interval kernels, J

(c)
j (s) is the interval Jaco-

bian, uj(s) and pj(s) are parametric boundary functions on individual segments
Sj of the interval boundary, R is the real part of complex function.

In the IFPIES integrals are computed using the same formulas as in the
FPIES (clearly derived in [5, 6]). The main difference is in the way of defining
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interval variables. At last, the IFPIES integrals are described as follows:

sj∫
sj−1

Û
∗(c)
lj (ŝ, s) pj (s)J

(c)
j (s)ds =

1

2π

NT∑
l=0

(−1)l·

·

{
NT∑
k=0

NT∑
m=l

(k +m− 1)! ·Mk(τc)

(τel − τc)k+m
· (τ ′el − τel)

m−l

(m− l)!

}
(τ̂ − τ ′el)

l

l!
,

sj∫
sj−1

P̂
∗(c)
lj (ŝ, s)uj (s)J

(c)
j (s)ds =

1

2π

NT∑
l=0

(−1)l·

·

{
NT∑
k=1

NT∑
m=l

(k +m− 1)! ·Nk(τc)

(τel − τc)k+m
· (τ ′el − τel)

m−l

(m− l)!

}
(τ̂ − τ ′el)

l

l!
.

(3)

where: NT is the number of of terms in the Taylor expansion, τ̂ = S
(1)
l (ŝ) +

iS
(2)
l (ŝ), τ = S

(1)
j (s) + iS

(2)
j (s), complex interval points τc, τel, τ

′
c, τ

′
el are

mid-points of leaves obtained during tracing the tree structure (see [5, 16]). Ex-
pressions Mk(τc) and Nk(τc) are called moments (and they are computed twice
only) and have the form [5, 16]:

Mk(τc) =

sj∫
sj−1

(τ − τc)k

k!
pj (s)J

(c)
j (s)ds,

Nk (τc) =

sj∫
sj−1

(τ − τc)k−1

(k − 1)!
n

(c)
j uj (s)J

(c)
j (s) ds.

(4)

where n
(c)
j = n

(1)
j +in

(2)
j the complex interval normal vector to the curve created

segment j.
The IPIES is solved using the pseudospectral method, therefore it is writ-

ten at collocation points whose number corresponds to the number of unknowns
(described in [1]). Hence, obtained interval system of algebraic equations can be
compact written as Hu = Gp, where u and p are column vectors containing co-
efficients of approximating boundary functions uj(s) and pj(s) respectively. This
system is transformed into the system of interval algebraic equations A · x = b
depending on the given type of boundary conditions. The vector x represents
unknown coefficients and the column vector b contains given boundary condi-
tions. The matrix A is dense, therefore in the IPIES direct solver in form of
interval Gaussian elimination was used to solve the system.

Unlike the IPIES, the IFPIES produces the system of algebraic equations
implicitly, i.e. only the result of multiplication of the matrix A by the vector of
unknowns x is obtained. Therefore, an iterative GMRES solver modified by the
application of directed interval arithmetic directly integrated with the FMM was
applied in the IFPIES. However, the direct solver in the IPIES requires O(N3)
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operations to solve the interval system of algebraic equations (N is the number
of equations). We also applied the GMRES solver to the IPIES to obtain a more
reliable comparison.

4 Numerical results

The first example is the gear-shaped plate presented in the Fig. 2a. The prob-
lem is described by Laplace’s equation. The boundary contains 1 024 segments.
Boundary conditions are also presented in Fig. 2a (where u - Dirichlet and p
- Neumann boundary conditions). Tests are performed on a PC based on Intel
Core i5-4590S with 16 GB RAM. Application of the IPIES and the IFPIES are
compiled by g++ 7.5.0 (-O2 optimization) on 64-bit Ubuntu Linux OS (kernel
5.4.0).

12 cm

10
 c

m

u=10

p=1

V
=

1
0

0

V
=

1
0

a) b)

Fig. 2. Considered a) the gear-shaped, b) the square shaped boundary problem

The research focused on the CPU time, RAM utilization and the accuracy
of the IFPIES compared to the IPIES. The mean square error (MSE) between
infimum and supremum of the IFPIES and the IPIES solutions are computed to
prove the accuracy of the proposed method.

Table 1. Comparison between the IFPIES and the IPIES

Number of CPU time [s] RAM utilization [MB] MSE

col. pts eqs IFPIES IPIES IFPIES IPIES inf sup

2 2 048 12.09 37.07 28.28 197 0.0 0.0

4 4 096 49.78 160.65 83.81 775 1.05 · 10−13 8.11 · 10−14

6 6 144 119.05 395.83 168 1 741 2.62 · 10−10 2.73 · 10−10

8 8 192 239.29 768.29 316 3 122 2.07 · 10−11 7.34 · 10−11

Approximation of the modified PIES kernels uses 25 terms in the Taylor
series, and the GMRES tolerance is equal to 10−8. The number of collocation
points is the same on all segments and equal to 2, 4, 6 or 8. Therefore, we should
solve the system of 2 048, 4 096, 6 144 and 8 192 equations respectively.

As can be seen from Tab. 1, the IFPIES is about 3 times faster and uses up
to 10 times less RAM than the IPIES. However, the mean square error (MSE)
between both methods is on a very low level and does not exceed 10−10. Hence,
the IFPIES is as accurate as the IPIES.
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The second example is the current flow through a square plate presented in
Fig. 2b. The problem is also described by Laplace’s equation. The boundary is
composed of 16 004 segments. Potentials V (Dirichlet boundary conditions) are
applied to two electrodes presented in Fig. 2b. Neumann boundary conditions
in the rest of the boundary are equal to 0.

As in the previous example, 25 terms in the Taylor series, the GMRES toler-
ance equal to 10−8 and the number of collocation points from 2 to 8 are applied
(the system of 32 008 to 128 032 equations is solved).

This example cannot be solved by the IPIES on a standard PC due to very
high RAM utilization. Therefore, computations were carried out at the Computer
Center of the University of Bialystok on Intel Xeon E5-2650v2 with 512 GB
RAM. Application of the IPIES and the IFPIES are compiled by g++ 8.3.0
(-O2 optimization) on 64-bit OpenHPC and Centos Linux OS (kernel 3.10.0).
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Fig. 3. The CPU time and the RAM utilization of the problem of the current flow
through a square plate

As can be seen from a Fig. 3 relationship between the CPU time (the RAM
utilization) and the number of equations in the IFPIES is close to linear contrary
to the IPIES. The IFPIES uses about 53 min and 2.2 GB RAM contrary to 123.5
h and 373.2 GB RAM in the IPIES for the example with 128 032 equations.
Hence, the IFPIES allows for solving large-scale uncertainly defined problems in
a reasonable time and small RAM utilization on a standard PC.

5 Conclusions

The paper presents the IFPIES in solving 2D potential uncertainly defined
boundary value problems. The FPIES was previously applied in modelling and
solving 2D single- and multi-connected certainly defined potential problems. Ap-
plied fast multipole technique with a modified binary tree allows for significant
reduction of CPU time, as well as RAM utilization. Also, the IFPIES allows for
highly efficient solving of complex engineering problems on a standard PC in a
reasonable time. However, the real power of the IFPIES is connected with the
large size of solved problems and low RAM utilization. The IPIES allows solving
the problems with a system up to about 25 000 equations on a standard PC
with 16 GB of RAM, whilst 128 032 equations in the IFPIES use about 2.2 GB
of RAM only.
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Obtained results strongly suggest that the direction of research should be
continued. The authors want to extend the algorithm of the IFPIES to problems
with curvilinear boundary shapes, as well as modelled by other equations.
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