
Compiling Linear Algebra Expressions into
Efficient Code

Julien Klaus, Mark Blacher, Joachim Giesen, Paul Gerhardt Rump, and
Konstantin Wiedom

Friedrich Schiller University Jena, Germany
{julien.klaus,mark.blacher,joachim.giesen,

paul.gerhardt.rump,konstantin.wiedom}@uni-jena.de

Abstract. In textbooks, linear algebra expressions often use indices to
specify the elements of variables. This index form expressions cannot
be directly translated into efficient code, since optimized linear algebra
libraries and frameworks require expressions in index-free form. To ad-
dress this problem, we developed Lina, a tool that automatically converts
linear algebra expressions with indices into index-free linear algebra ex-
pressions that we map efficiently to NumPy and Eigen code.

Keywords: linear algebra · vectorization · domain specific languages ·
mathematics of computing.

1 Introduction

In textbooks, linear algebra expressions often use indices to access the entries of
vectors and matrices, or to sum over certain dimensions. These expressions can be
translated directly into loops over indices in the program code, which, however,
is often not efficient [1,6]. It is more efficient to map expressions with indices to
highly tuned parallel linear algebra libraries like NumPy [9] or Eigen [8]. These
libraries expect their input in index-free form. Therefore, in order to use efficient
linear algebra libraries, expressions in index form need to be transformed into
index-free form. We present an implementation of this approach, that we call
Lina. Lina comprises three parts:

1. A formal input language close to textbook form (Section 2),
2. the transformation from index form into index-free form (Section 3), and
3. mappings to linear algebra libraries and frameworks (Section 4).

The transformation from index form to index-free form is the most challenging
part and requires a good understanding of fundamental linear algebra. Consider
for example the classical ridge regression problem [13]. Given a feature matrix
X ∈ Rn×m, a label vector y ∈ Rn, and hyperparameters β ∈ Rm, µ, λ ∈ R the
ridge regression problem in textbook form reads as

min
β

n∑
i=1

(
yi − µ−

m∑
j=1

Xijβj

)2

+ λ

m∑
j=1

βj .

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_2

https://dx.doi.org/10.1007/978-3-031-08754-7_2

2 Julien Klaus et al.

This expression includes three summation operations, each of which become
loops in the implementation. Transforming the expression into index-free form
results in

min
β

(y − µ · 1n −X⊤β)⊤(y − µ · 1n −X⊤β) + λ · β⊤1m,

where 1n = (1, 1, . . . , 1) is the all-ones vector. Since the index-free expression
does only contain compound linear algebra operations, we can map it directly
to linear algebra libraries. However, developers usually do not take the time to
formulate their problems in index-free form, although using a highly optimized
linear algebra library would lead to a better performance. Here, our focus is on
automatically transforming expressions into index-free form. We further optimize
the resulting index-free expressions before we map them to Eigen and NumPy
routines. An easy-to-use implementation of our approach can be found online at
https://lina.ti2.uni-jena.de.

Related Work. Various approaches already exist for mapping expressions in
index-free form to linear algebra libraries [7,14,15]. Often such methods make
use of additional information about the expressions’ variables and parameters,
for example, symmetry of matrices [2,16]. Also, multiple attempts are known to
generate efficient code for expressions in index form [3,4,12]. These approaches
are not transforming expressions into index-free form, but directly optimize the
loops, for instance by reordering.

2 A Language for Linear Algebra Expressions

In this section, we describe a formal language for extended linear algebra expres-
sions in index form. The notation used in this language is close to MATLAB [10].
It is rich enough to cover most classical machine learning problems, even prob-
lems not contained in standard libraries like scikit-learn [5].

⟨expr⟩ ::= ⟨term⟩ {(’+’ | ’-’) ⟨term⟩}
⟨term⟩ ::= [’-’] ⟨factor⟩ {(’*’ | ’/’) [’-’] ⟨factor⟩}
⟨factor⟩ ::= ⟨atom⟩ [’ˆ’ ⟨factor⟩]
⟨atom⟩ ::= number | ⟨function⟩ ’(’ ⟨expr⟩ ’)’ | ⟨variable⟩
⟨function⟩ ::= ’sin’ | ’cos’ | ’exp’ | ’log’ | ’sign’ | ’sqrt’ | ’abs’ | ’sum’ ’[’ ⟨index ⟩ ’]’
⟨variable⟩ ::= alpha+ [’[’ ⟨index ⟩ {’,’ ⟨index ⟩} ’]’]
⟨index ⟩ ::= alpha

Fig. 1. EBNF grammar for linear algebra expressions in index form. In this grammar,
number is a placeholder for an arbitrary floating point number and alpha for Latin
characters.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_2

https://lina.ti2.uni-jena.de
https://dx.doi.org/10.1007/978-3-031-08754-7_2

Compiling Linear Algebra Expressions into Efficient Code 3

The language supports binary operations as well as unary point-wise opera-
tions like log or exp, and of course, variables and numbers. A special operation is
the summation operation sum that has a non-optional index. This index is used
to address elements of vectors or matrices. The full grammar for the language is
shown in Figure 1. In this language, the classical ridge regression example reads
as

sum[i]((y[i]− µ− sum[j](X[i, j] ∗ β[j]))2) + λ ∗ sum[j](β[j]).

A point worth emphasizing is that the indices always select scalar entries of
a vector or matrix. This makes every operation an operation between scalars,
which is different in index-free notation, where operations are on compound
structures.

Expressions that follow the above grammar are parsed into an expression
tree. An expression tree G = (V,E) is a binary tree, where each node v ∈ V has
a specific label. This label can be either an operation, a variable name, a number,
or an index. Furthermore, we assign each node a scope, containing indices. For
leaf nodes, describing vectors and matrices, the scope contains the associated
indices, and for all other nodes, except for the special sum nodes, the scope is
the union of the scopes of the child nodes. Since the sum operation removes
an index, the scope of a sum node removes an index from the union of their
children’s scopes. An expression tree for the ridge regression example is shown
in Figure 2.

3 Transformation from Index Form into Index-Free Form

The main part of Lina is the automatic transformation of expressions from
index form into index-free form. In index form expressions, all operations are
operations on scalars, whereas in index-free form expressions operations are on
compound structures like vectors or matrices. For example, the multiplication
Xij · βj multiplies the value of X at index (i, j) with the value of β at index
j. We can collect these values into an (m × n)-matrix (Xij · βj)i∈[n],j∈[m]. This
matrix can be transformed into a point-wise product of two matrices, where X
is the first matrix and the outer product 1nβ⊤ is the second matrix. Indeed, we
compute

X11 · β1 . . . X1m · βm

...
. . .

...
Xn1 · β1 . . . Xnm · βm

 =

X11 . . . X1m

...
. . .

...
Xn1 . . . Xnm

⊙

β1 . . . βm

...
. . .

...
β1 . . . βm

=

X11 . . . X1m

...
. . .

...
Xn1 . . . Xnm

⊙

1
...
1

 ·

β1

...
βm

⊤

.

The idea of increasing the dimension of a subexpression by an outer product to
enable a point-wise operation works directly for vectors, but not for matrices. In

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_2

https://dx.doi.org/10.1007/978-3-031-08754-7_2

4 Julien Klaus et al.

+

ˆ

2sum

i -

-

y µ

sum

j *

βX

*

λ sum

j β

i

i j

j

j

∅

{j}

{i, j}

∅∅

{i}

Fig. 2. Expression tree for the ridge regression problem with different node types. Bold
nodes indicate sum operations, dashed nodes are indices, and all other nodes are either
common operators or variables. For some nodes, we show the scope of the node in
dotted rectangles.

these cases, we use the scope assigned to each node. To work with the scopes,
we switch to an Einstein like notation. In this notation, each multiplication is
represented by a tuple (m, l, r). The tuple (m, l, r) contains the dimension m of
the result of the operation, the dimension l of the left, and the dimension r of
the right operand. The following equations show how to represent the different
multiplication types in Einstein-like notation as well as in linear algebra notation.
Let x ∈ Rn and y ∈ Rn, then

x⊤ · y = x ·(∅,n,n) y, (inner product)
x⊙ y = x ·(n,n,n) y, (point-wise multiplication)

x · y⊤ = x ·(nn,n,n) y. (outer product)

The scope of a node and the scopes of its left and right child, respectively, directly
correspond to the entries of the tuple. This notation enables us to describe
the multiplication type we need during the transformation. The transformation
starts at the root and recursively adjust the left and right child of nodes to satisfy
their index requirements. If we encounter a node, except a sum node, with a left
or right child that does not have the same scope, we adjust the scope by adding
a multiplication node to the respective subtrees. The new multiplication nodes
multiply the old subtrees with an all-ones vectors to supply the missing index.
In our example, we have multiplied an all-ones vector with β to supply the

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_2

https://dx.doi.org/10.1007/978-3-031-08754-7_2

Compiling Linear Algebra Expressions into Efficient Code 5

dimension represented by index i. The sum node is special since it removes an
index from the scope. This can be accomplished by an inner-product with an all-
ones vector. We therefore relabel sum nodes as multiplication nodes, and change
their left child nodes, which represent an index, into all-ones vectors with the
corresponding indices.

In summary, we use outer products to transform binary operations over un-
equal dimensions into point wise operations over equal dimensions and inner
products to reduce a dimension by sum operations. The transformed expression
tree, for the ridge regression example, is shown in Figure 3. There, we high-
light added and adjusted nodes in gray. Note, that sum nodes have turned into
multiplication nodes. The semantics of product nodes can be decided from their
scopes.

+

ˆ

2∗

-

-

y

µ

*

∗

*

*

β

X

*

λ ∗

β

i

i

j

j

j

j

i

j

j

i 1

1

1

1

1

∅

{j}

{i, j}

∅

{i, j}

Fig. 3. Expression tree for the ridge regression problem after the transformation into
index-free form. Nodes that have been transformed are highlighted in gray. For clarity,
we still show the index nodes, although they are no longer needed.

4 Compilation into Multiple Backends

During the transformation from index to index-free form, the nodes of the ex-
pression tree are replaced by compound subexpressions, which can make the tree
unnecessarily large. Listing 1 shows non-optimized index-free NumPy code.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_2

https://dx.doi.org/10.1007/978-3-031-08754-7_2

6 Julien Klaus et al.

Listing 1. Compiled NumPy code for the ridge regression problem given as
∑n

i=1(yi−
µ−

∑m
j=1 Xijβj)

2 + λ
∑m

j=1 βj without any optimization.

np.add(np.sum(np.multiply(np.ones(y_shape [0]),np.power(np.
subtract(np.subtract(y,np.multiply(m,np.ones(y_shape [0]))
),np.dot(np.multiply(X,b),np.ones(X_shape [1]))) ,2))),np.
multiply(l,np.sum(np.multiply(np.ones(X_shape [1]),b))))

Therefore, before we compile the expression tree into the different backends,
we perform various optimizations that reduce the size of the tree. For instance, we
perform a default constant folding, and identify common subexpressions, extract
them, and link nodes in the tree to the corresponding common subexpression.
Furthermore, we exploit broadcasting operations of the individual backends like
NumPy or Eigen. For example, the subexpression y − 1n · µ in index-free form
can be written as y − µ in most backends. In this case, no extra all-ones vector
has to be created, which speeds up the computation and reduces the memory
footprint. Since broadcasting operations are different for different backends, we
apply them during the compilation into the backends when possible.

Lina is currently compiling into NumPy and Eigen. The compilation traverses
the index-free expression tree from the root to the leaves and replaces nodes by
methods from the respective backends. At a leaf node, the name of the node is
returned, and at a multiplication node the type is determined using the nodes’
scope. During the transformation, higher-dimensional tensors may arise that
cannot be expressed by matrix-vector operations. There are several approaches
to map them efficiently to code [11,17]. For instance, NumPy directly allows us
to calculate tensor subexpressions using the einsum method. To do so, we use
the scope of the node and the scopes of its left and right child to compute an
einsum string corresponding to the operation. The optimized compiled NumPy
code for the ridge regression problem is shown in Listing 2.

Listing 2. Compiled NumPy code for the Ridge regression problem, after optimization.

np.sum((y-m-X.dot(b))**2)+l*np.sum(b)

5 Conclusion

We have presented Lina, a tool for automatically compiling extended linear
algebra expressions with indices into efficient linear algebra routines. Our main
contribution is the transformation of expressions with indices into index-free
form. We map this index-free form to NumPy and Eigen, which exploit the
parallelization and vectorization capabilities of the underlying hardware. Lina,
is available at https://lina.ti2.uni-jena.de.

Acknowledgements

This work was supported by the Carl Zeiss Foundation within the project Inter-
active Inference and from the Ministry for Economics, Sciences and Digital So-
ciety of Thuringia (TMWWDG), under the framework of the Landesprogramm
ProDigital (DigLeben-5575/10-9).

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_2

https://lina.ti2.uni-jena.de
https://dx.doi.org/10.1007/978-3-031-08754-7_2

Compiling Linear Algebra Expressions into Efficient Code 7

References

1. Ascher, D., Dubois, P.F., Hinsen, K., Hugunin, J., Oliphant, T., et al.: Numerical
python (2001)

2. Barthels, H., Psarras, C., Bientinesi, P.: Linnea: Automatic generation of efficient
linear algebra programs. ACM Trans. Math. Softw. 47(3) (2021)

3. Baumgartner, G., Auer, A.A., Bernholdt, D.E., Bibireata, A., Choppella, V., Co-
ciorva, D., Gao, X., Harrison, R.J., Hirata, S., Krishnamoorthy, S., Krishnan, S.,
Lam, C., Lu, Q., Nooijen, M., Pitzer, R.M., Ramanujam, J., Sadayappan, P.,
Sibiryakov, A.: Synthesis of high-performance parallel programs for a class of ab
initio quantum chemistry models. Proc. IEEE 93(2) (2005)

4. Bilmes, J.A., Asanovic, K., Chin, C., Demmel, J.: Author retrospective for opti-
mizing matrix multiply using phipac: a portable high-performance ANSI C coding
methodology. In: ACM International Conference on Supercomputing 25th Anniver-
sary Volume. ACM (2014)

5. Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Nic-
ulae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J.,
Joly, A., Holt, B., Varoquaux, G.: API design for machine learning software: expe-
riences from the scikit-learn project. In: ECML PKDD Workshop (2013)

6. Cai, X., Langtangen, H.P., Moe, H.: On the performance of the python program-
ming language for serial and parallel scientific computations. Sci. Program. 13(1)
(2005)

7. Franchetti, F., Low, T.M., Popovici, D., Veras, R.M., Spampinato, D.G., John-
son, J.R., Püschel, M., Hoe, J.C., Moura, J.M.F.: SPIRAL: extreme performance
portability. Proc. IEEE 106(11) (2018)

8. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)
9. Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cour-

napeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M.,
Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del Río, J.F., Wiebe, M.,
Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Ab-
basi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature
585(7825) (2020)

10. The Mathworks, Inc., Natick, Massachusetts: MATLAB version R2021a (2021)
11. Matthews, D.A.: High-performance tensor contraction without transposition.

SIAM J. Sci. Comput. 40(1) (2018)
12. Nuzman, D., Dyshel, S., Rohou, E., Rosen, I., Williams, K., Yuste, D., Cohen, A.,

Zaks, A.: Vapor SIMD: auto-vectorize once, run everywhere. In: Proceedings of the
CGO 2011. IEEE Computer Society (2011)

13. Owen, A.B.: A robust hybrid of lasso and ridge regression. Contemporary Mathe-
matics 443(7) (2007)

14. Psarras, C., Barthels, H., Bientinesi, P.: The linear algebra mapping problem. arXiv
preprint arXiv:1911.09421 (2019)

15. Sethi, R., Ullman, J.D.: The generation of optimal code for arithmetic expressions.
J. ACM 17(4) (1970)

16. Spampinato, D.G., Fabregat-Traver, D., Bientinesi, P., Püschel, M.: Program gen-
eration for small-scale linear algebra applications. In: Proceedings of the 2018 In-
ternational Symposium on Code Generation and Optimization. ACM (2018)

17. Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., DeVito, Z., Moses, W.S.,
Verdoolaege, S., Adams, A., Cohen, A.: Tensor comprehensions: Framework-
agnostic high-performance machine learning abstractions. CoRR abs/1802.04730
(2018)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08754-7_2

https://dx.doi.org/10.1007/978-3-031-08754-7_2

