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Abstract Within the field of causal inference, we consider the problem
of estimating heterogeneous treatment effects from data. We propose and
validate a novel approach for learning feature representations to aid the es-
timation of the conditional average treatment effect or cate. Our method
focuses on an intermediate layer in a neural network trained to predict
the outcome from the features. In contrast to previous approaches that
encourage the distribution of representations to be treatment-invariant,
we leverage a genetic algorithm to optimize over representations useful
for predicting the outcome to select those less useful for predicting the
treatment. This allows us to retain information within the features useful
for predicting outcome even if that information may be related to treat-
ment assignment. We validate our method on synthetic examples and
illustrate its use on a real life dataset.
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1 Introduction

In this note, we aim to engineer feature representations to aid in the estimation
of heterogeneous treatment effects. We consider the following graphical model

X

W Y

←→ ←→

← →

(1)

where X ∈ Rd denotes a vector of features, W ∈ {0, 1} represents a boolean
treatment, and Y ∈ R denotes the outcome. Suppose (Xi,Wi, Yi) for i = 1, . . . , n
are i.i.d. samples from a distribution P respecting the graph (1). Within the
potential outcomes framework [10], we let Yi(0) denote the potential outcome
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if Wi were set to 0 and Yi(1) denote the potential outcome if Wi were set to
1. We wish to estimate the conditional average treatment effect (cate) defined
by τ(x) = E[Y (1) − Y (0)|X = x]. We impose standard assumptions that the
treatment assignment is unconfounded, meaning that {Yi(0), Yi(1)} ⊥Wi | Xi,
and random in the sense that ϵ < P (Wi = 1|Xi = xi) < 1 − ϵ for all i, some
ϵ > 0, and all xi in the support of Xi. These assumptions jointly constitute
strong ignorability [13] and prove sufficient for the cate to be identifiable. Under
them, there exist methods to estimate the cate from observed data that then
allow us to predict the expected individualized impact of an intervention for
novel examples using only their features. Viewing these approaches as black box
estimators, we seek a mapping Φ : Rd → Rm such that the estimate of the cate
learned on the transformed training data (Φ(Xi),Wi, Yi) is more accurate than
an estimate learned on the original samples (Xi,Wi, Yi). In particular, we desire
a function Φ yielding a corresponding representation Φ(X) such that (1) Φ(X)
is as useful as X for estimating Y , and (2) among such representations, Φ(X)
is least useful for estimating W . In this way, we hope to produce a new set of
features Φ(X) that retain information relevant for predicting the outcome but
are less related to treatment assignment. We propose learning Φ as a hidden layer
in a neural network estimating a functional relationship of Y given X. We apply
a genetic algorithm to a population of such mappings to evolve and select the one
for which the associated representation Φ(X) is least useful for approximating W .

Feature representations have previously been used for causal modeling. Jo-
hansson, et al. [4,14] viewed counterfactual inference as a covariate shift problem
and learned representations designed to produce similar empirical distributions
among the treatment and control populations. Li & Fu [8] and Yao, et al. [16]
developed representations designed to preserve local similarity. However, we
generally agree with Zhang et al.’s [17] recent argument that domain invariance
often removes too much information from the features for causal inference.† In
contrast to most previous approaches, we develop a feature representation that
attempts to preserve information useful for predicting the treatment effect if it is
also useful for predicting the outcome.

Outline. The next section describes related work. In section 3, we outline our
methodology. We validate our method on artificial data in section 4 and on a
publicly available experimental dataset in section 5, before concluding in section 6.

2 Related work

In this section, we discuss meta-learning approaches for inferring the cate and
briefly introduce genetic algorithms.

Meta-learners. Meta-learning approaches leverage an arbitrary regression frame-
work (e.g., random forests, neural networks, linear regression models) to estimate

†Zhao et al. [18] make this argument in a more general setting.
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the cate from data. The S-learner (single-learner) uses a standard supervised
learner to estimate µ(x,w) = E[Y |X = x,W = w] and then predicts τ̂S(x) =
µ̂(x, 1)− µ̂(x, 0). The T-learner (two-learner) estimates µ1(x) = E[Y (1)|X = x]
from treatment data and µ0(x) = E[Y (0)|X = x] from control data and then
predicts τ̂T (x) = µ̂1(x)− µ̂0(x). The X-learner [6] estimates µ1 and µ0 as in the
T-learner, and then predicts the contrapositive outcome for each training point. It
then estimates τ1(x) = E[Yi−µ̂0(Xi) | X = x] and τ0(x) = E[µ̂1(Xi)−Yi | X = x]
before predicting τ̂X(x) = g(x)τ̂0(x) + (1 − g(x))τ̂1(x) where g : Rd → [0, 1]
is a weight function.‡ The R-learner [11] leverages Robinson’s decomposi-
tion that led to Robin’s reformulation of the cate function as the solution
to τ(·) = argminτ{E(X,W,Y )∼P [|(Y −m(X))− (W − e(X))τ(X)|2]} in terms of
the treatment propensity e and conditional mean outcome m(x) = E[Y |X = x].

Neuroevolutionary algorithms Holland introduced genetic algorithms [2] as
a nature-inspired approach to optimization. These algorithms produce successive
generations of candidate solutions. New generations are formed by selecting the
fittest members from the previous generation and performing cross-over and/or
mutation operations to produce new offspring candidates. Evolutionary algorithms
encompass extensions to and generalizations of this approach including memetic
algorithms that perform local refinements, genetic programming that acts on
programs represented as trees, and evolutionary programming and strategies
that operate on more general representations. When such methods are applied
specifically to the design and training of neural networks, they are commonly
called neuroevolutionary algorithms. See Stanley et al. [15] for a review.

3 Methodology

We now describe how to create our feature mapping Φ : Rd → Rm. Individual
candidate solutions derive from a hidden layer in a network trained to predict Y
from X. We then evolve cohorts of parameter sets for such maps to minimize the
functional usefulness of candidate representations for predicting W .

Candidate solutions. We consider neural networks fΘ : Rd → R of the form
fΘ(x) = M2 · a(M1 · x + b1) + b2 for a nonlinear activation function a where
the parameter set Θ denotes M1 ∈ Rm×d, M2 ∈ R1×m, b1 ∈ Rm, and b2 ∈ R1.
Though fΘ is decidedly not a deep neural network, we note that, as a neural
network with a single hidden layer, it remains a universal function approximator
in the sense of Hornik et al. [3]. Optimizing the network fΘ in order to best
predict Y from X seeks the solution Θ∗ = argminΘ E |Y − fΘ(X)|2 . For fixed
Θ, we let ΦΘ : Rd → Rm given by ΦΘ(x) = a(M1 · x+ b1) denote the output of
the hidden layer.

‡It is also possible to estimate τ from {(Xi, Yi − µ̂0(Xi))}Wi=1 ∪ {(Xi, µ̂1(Xi) −
Yi)}Wi=0 or, using µ̂(x,w) from the S-learner approach, with {(Xi, Yi−µ̂(Xi, 0))}Wi=1∪
{(Xi, µ̂(Xi, 1)−Yi)}Wi=0. We find that these alternate approaches work well in practice
and obviate the need to estimate or fix g.
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Fitness function. For Θ near the optimum Θ∗, ΦΘ(X) should be approximately
as useful as X for estimating Y . However, the mapped features ΦΘ(X) may also
carry information useful for predicting W . To this end, we define gΨ,Θ : Rd → [0, 1]
by gΨ,Θ(x) = σ(M4 · a(M3 · ΦΘ(x) + b3) + b4) for a nonlinear activation a,
sigmoidal activation σ, and parameter set Ψ consisting of M3 ∈ Rk×m, M4 ∈
R1×k, b3 ∈ Rk, and b4 ∈ R. We define the fitness of a parameter set Θ to
be µ(Θ) = minΨ E |W − gΨ,Θ(X)|2 . In this way, we express a preference for
representations ΦΘ(X) that are less useful for predicting W .

Evolutionary algorithm. Given training and validation datasets, we form an
initial cohort of c candidates independently as follows. For 1 ≤ j ≤ c, we randomly
instantiate Θj using Glorot normal initialization for the weights and apply the
Adam optimizer on training data to seek Θ∗. We use Tikhonov regularization for
the weights and apply dropout after the a(x) = tanh(x) activation function§to
prevent overfitting. For each constituent Θj in the cohort, we then initialize and
train a network gΨ,Θj

to seek Ψj = argminΨ E
∣∣W − gΨ,Θj

(X)
∣∣2 on the training

set and then evaluate E
∣∣W − gΨj ,Θj (X)

∣∣2 empirically on the validation set to
estimate µ(Θj). For each of the

(
ℓ
2

)
pairs formed from the ℓ fittest members of the

current cohort, we apply Montana and Davis’s node-based crossover [9] method
to the parameters M1 and b1 that we use to form Φ. The next generation then
consists of the fittest candidate from the previous generation, the candidates
formed from cross-over, and new candidates generated from scratch.

Remarks. Due to our choice of representation Φ, after training the network
fΘ(x), we expect the relationship between the learned features Φ(X) and the
outcome Y to be approximately linear. In particular, Y ≈M2 · Φ(X). For this
reason, the causal meta-learners trained using a linear regression base learner
may benefit more extensively from using the transformed features instead of the
original features, especially in cases where the relationship between the original
features and outcomes is not well-approximated as linear.

In order to use the represented features Φ(Xi) in place of the original fea-
tures Xi, we require that strong ignorability holds for the transformed dataset
(Φ(Xi),Wi, Yi), i = 1, . . . , n. One sufficient, though generally not necessary, as-
sumption that would imply strong ignorability is for Φ to be invertible on the
support of X [14, assumption 1]. Unconfoundedness would also be guaranteed if
Φ(X) satisfied the backdoor condition with respect to (W,Y ) [12, section 3.3.1].

4 Ablation study on generated data

Due to the fundamental challenge of causal inference (namely, that the coun-
terfactual outcome cannot be observed, even in controlled experiments), it is

§We tested rectified and exponential linear unit activation functions for a in ΦΘ but
noticed only minor differences in subsequent performance of the causal forest.
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common practice to compare approaches to cate estimation on artificially gener-
ated datasets for which the cate can be calculated. In this section, we perform
experiments using Setups A and C from Nie & Wager’s paper [11].‡

Comparison methodology. For both setups, we ran 100 independent trials.
Within each trial, we randomly partitioned a simulated dataset it into training,
validation, and testing subsets at a 70%-15%-15% rate. We trained causal inference
methods on the training and validation sets, and predicted on the test dataset.
We then developed a feature map using the training and validation data as
described in the previous section, applied this map to all features, and repeated
the training and testing process using the new features. To determine the impact
of the fitness selection process, we also learned a feature transformation that did
not make use of the fitness function at all. It simply generated a single candidate
mapping and used it to transform all the features. This ablative method is referred
to as “no-fitness” in Table 1. We compared the causal forest [1] with default
options, and the S-, T-, and X-learners with two base learners: LightGBM [5]
and cross-validated ridge regression.

Results. We report results in Table 1. For both setups, we consider a paired
t-test for equal means against a two-sided alternative. For setup A, we find
that the improvement in MSE from using the transformed features in place
of the original features corresponds to a statistically significant difference for
the following learners: the causal forest (p < 0.001), the S-learner with ridge
regression (p < 0.001), the T-learner with both LightGBM (p < 0.001) and ridge
regression (p < 0.001), and the X-learner with both LightGBM (p < 0.001) and
ridge regression (p < 0.001). For setup C, we again find significant differences
for the causal forest (p = 0.023), S-learner with LightGBM (p = 0.003), T-
learner with ridge regression (p < 0.001) and X-learner with ridge regression
(p < 0.001). In summary, we find that our feature transformation method improves
the performance of multiple standard estimators for the cate under two data
generation models.

learner features Set. A Set. C

Causal forest initial 0.175 0.035
no-fitness 0.114 0.029
transformed 0.120 0.029

learner features Set. A Set. C

S-L. LGBM initial 0.149 0.226
no-fitness 0.140 0.211
transformed 0.135 0.204

S-L. Ridge initial 0.093 0.015
no-fitness 0.079 0.015
transformed 0.081 0.015

T-L. LGBM initial 0.666 0.567
no-fitness 0.536 0.551
transformed 0.512 0.544

learner features Set. A Set. C

T-L. Ridge initial 0.745 0.178
no-fitness 0.333 0.125
transformed 0.325 0.128

X-L. LGBM initial 0.411 0.313
no-fitness 0.335 0.313
transformed 0.317 0.298

X-L. Ridge initial 0.630 0.166
no-fitness 0.289 0.109
transformed 0.288 0.114

Table 1: Average Mean Squared Error (MSE) over 100 independent trials.

‡Nie & Wager’s paper included four setups, namely A–D; however setup B modeled
a controlled randomized trial and setup D had unrelated treatment and control arms.
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Figure 1: We plot estimated realized and predicted average treatment effects
versus the quintiles of predicted treatment effect (5 bins) for a causal forest using
(left) the initial features and (right) the features transformed using our method.

5 Application to econometric data

In this section, we apply our feature engineering method to the LaLonde dataset [7]
chronicling the results of an experimental study on temporary employment
opportunities. The dataset contains information from 445 participants who were
randomly assigned to either an experimental group that received a temporary
job and career counseling or to a control group that received no assistance. We
consider the outcome of earnings in 1978 (in $, after treatment).

We cannot determine true average treatment effects based on individual-level
characteristics (i.e. the true cate values) for real life experimental data as we
can with the synthetic examples of the previous section. Instead, we evaluate
performance by comparing the average realized and predicted treatment effects
within bins formed by sorting study participants according to predicted treatment
effect as demonstrated in Figure 1. Applying the causal forest predictor to the
original features results in a root mean square difference between the average
predicted and realized treatment effects of 4729.51. Using the transformed features
improves this discrepancy to 3114.82. From a practical perspective, one may
learn the cate in order to select a subset of people for whom a given intervention
has an expected net benefit (and then deliver that intervention only to persons
predicted to benefit from it). When we focus on the 20% of people predicted to
benefit most from this treatment, we find that the estimated realized benefit for
those chosen using the transformed features ($4732.89) is much greater than the
benefit for those chosen using the original feature set ($816.92). This can be seen
visually in Figure 1 by comparing bin #5 (the rightmost bin) in both plots.

6 Conclusions

Causal inference, especially on real life datasets, poses significant challenges
but offers a crucial avenue for predicting the impact of potential interventions.
Learned feature representations help us to better infer the cate, improving
our ability to individually tailor predictions and target subsets of the general
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population. In this paper, we propose and validate a novel representation-based
method that uses a neuroevolutionary approach to remove information from
features irrelevant for predicting the outcome. We demonstrate that this method
can yield improved estimates for the cate on standard synthetic examples and
illustrate its use on a real life dataset. We believe that representational learning
is particularly well-suited for removing extraneous information in causal models
and anticipate future research in this area.

Acknowledgements. We would like to thank Binjie Lai, Yi-Hong Kuo, Xiang
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