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Abstract. With the development of distributed stream processing sys-
tems, elastic resource allocation has become a powerful means to deal
with the fluctuating data stream. The existing methods either focus on a
single operator or only consider the static correlation between operators
to perform elastic scaling. However, they ignore the dynamic correlation
between operators in data stream processing applications, which leads
to lagging and inaccuracy resource allocation, increasing processing la-
tency. To address these issues, we propose an elastic resource allocation
method, which is based on the dynamic perception of operator influence
domain, to perform resource allocation dynamically and in advance. The
experimental results show that compared with the existing methods, our
method not only guarantees that the end-to-end latency meets QoS re-
quirements but also reduces resource utilization.

Keywords: Data stream processing - Dynamic correlation - Adaptive
partition - Meta-learning.

1 Introduction

Distributed stream processing systems (DSPSs) can quickly analyze and mine
the real-time value of data, which are powerful means to process continuous and
massive data. In DSPSs, resource allocation determines the operator parallelism
of data stream processing applications (DSPAs), which is the key to ensure the
QoS of DSPAs. Because data streams exhibit the characteristics of dynamic
fluctuation and mutation, elastic resource allocation has become a dominant
method.

Many researchers have proposed elastic resource allocation methods. Zhang
et al. [1] monitors the actual processing time of input data load for each operator,
which is compared with the required time to identify the bottlenecks, and in-
creases the parallelism of those operators to maximize the throughput of DSPAs
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in shared memory multi-core architectures. Mu et al. [2] predicts the load of each
operator and compares it with the processing performance to allocate resources
quantitatively. These methods focus on a single operator to perform elastic scal-
ing and do not consider the correlation between operators. Actually, the changes
in the upstream operators may create ripple effects throughout DSPAs [3, 4], and
some researchers utilize the correlation between operators. Lombardi et al. [5]
calculates the load of an operator based on the input load of the DSPA and the
average selectivity of its upstream operators, and then analyzes the CPU uti-
lization of the operator under the load to determine whether to scale elastically.
Wei et al. [6] calculates the load of an operator according to the DSPA’s load,
average selectivity, and average network bandwidth of its upstream operators,
which is then compared with the performance to adjust the parallelism. How-
ever, these methods ignore the dynamic characteristic of correlation between
operators. This will result in lagging and inaccurate resource allocation, which
increases processing latency in DSPSs.

In this paper, we propose an elastic resource allocation method based on
the dynamic perception of operator influence domain to adjust the operator
parallelism dynamically and in advance. The contributions of our work are as
follows:

— To the best of our knowledge, our work is the first to utilize the dynamic
correlation between operators for resource allocation. We use the static se-
lectivity metrics and dynamic selectivity statistic metrics to evaluate the
influence domain of upstream operators. Accordingly, we divide the DSPA
into partitions adaptively, and plan the parallelism of the operators in units
of partitions.

— We use the random forest regression (RFR) [7] to model the correlation
between operators within each partition online and update it dynamically.
For the input load of each partition, we compute the optimal parallelism of
each operator in this partition.

— We use the meta-learning method to predict the load of each partition online.
To the best of our knowledge, this is the first to combine the strong expressive
long short term memory networks (LSTM) meta-learner and the efficient
multi-layer perceptron (MLP) base-learner to catch the fluctuations features
of the data stream in real-time.

— The experimental results show that our work ensures that the end-to-end
latency meets QoS requirements while improving resource utilization effi-
ciency.

The rest of this paper is organized as follows. Section 2 introduces the moti-
vation of our work. Section 3 describes the design and implementation. Section
4 shows the experimental results. Finally, Section 5 concludes our paper.
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2 Motivation

2.1 Dynamic Correlation between Upstream and Downstream
Operators

In DSPAs, the data stream is processed by the upstream operators and sent to
the downstream operators. As mentioned above, when the load or parallelism
of the upstream operator changes, the downstream operator will change accord-
ingly. We take the word count application as an example. The directed acyclic
graph (DAG) of the application is shown in Fig. 1. The operator parser parses
each received article, filtter filters duplicate articles, splitter splits each article
into words, and counter counts the frequency of each word. We illustrate our
motivation with the operators parser, filtter and splitter, whose input loads
are expressed in the number of articles received per second.

©-0-0-0-0-0

parser  filter  splitter counter

Fig. 1. The DAG of Word Count Application.

In Fig. 2(a), as the load of parser increases or decreases, the load of filter
also increases or decreases. To handle the increased load, we increase the par-
allelism of parser, and subsequently the parallelism of filter also increases, as
shown in Fig. 2(b). Thus, we get that the changes of load and parallelism of the
upstream operator affect that of the downstream operator. Besides, we compute
the Pearson Correlation Coefficient of load and parallelism between parser and
filter, as shown in Table 1. We get that the correlation between the upstream
and downstream operator is time-varying.

Table 1. Pearson Correlation Coefficient of Load and Parallelism between Upstream
and Downstream Operators.

Epoch CORR(parser, filter) CORR(parser,splitter)
Load Parallelism Load Parallelism
Epoch 0-9 0.9973 0.9489 -0.0626 0.01856
Epoch 10-19 0.9993 0.9836 0.9993 0.9972

2.2 Dynamic Influence Domain of Upstream Operators

The operators in the DAG are not globally correlated but show the character-
istics of local correlation. We find that there is little or no correlation between
the upstream operator parser and downstream operator splitter. As shown in
Fig. 2(a), from epoch 0 to 9, the load of parser increases first and then de-
creases, while that of splitter fluctuates. The reason is that parser receives a lot
of duplicate articles during that period, which are filtered by filter.

So the correlation of load between parser and splitter is not obvious, as
shown in Table 1. From epoch 10 to 19, the load of parser increases and that
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of splitter also increases. The load between parser and splitter shows a strong
correlation. In Fig. 2(b) we get the same results for the parallelism of parser and
splitter. Thus, we get that the influence of upstream operators on downstream
operators has a range, which is named the operator influence domain. Besides,
the influence domain of operators is time-varying, as shown in Table 1.

L 8000 & . -=-- parser /
<] £ cu ) :
s i H < filter //

7000 3 ) §
g A pyd @ 12{ —— splitter .
o P & o 7
O 6000 P \ ¥/ (@) 7

£ \ K %
P } v " c 10 /.
&5 5000 F 5 p 7/ k4 s P
w / §( rr/' W 7 e
‘5 4000 % % </ G e / «
/ % £ o /
S / Y X = ¥ \ : -
© 30001 ¥ x £/ G / /
s / N E4 = / A A X
< N /
+ 20001/ Ay ¥ -+- parser D oaq p & KRR S Yer
a | AN e filter [ AN AN N
S 1000 £7 N A N 8 ol X Tmd e A ke
= (SR VAN —— splitter AV
0 5 10 15 20 0 5 10 15 20
Epoch Epoch
(a) (b)

Fig. 2. The Load and Parallelism of Operators in the DAG.

2.3 Importance of Dynamic Perception of Operator Influence
Domain.

QoS Guarantee. If we can accurately analyze the influence domain of upstream
operators, we can adjust the parallelism of downstream operators within the
domain in advance to satisfy the end-to-end latency requirements better.

System Stability. If we can refer to the upstream operators to adjust the
parallelism of downstream operators in the influence domain, we can avoid ad-
justment jitter to improve system stability.

System Overhead. If we can model each influence domain instead of each
operator, we will reduce the computational overhead and resource overhead.

3 Design and Implementation

3.1 Overview

We describe our model in Fig. 3. It contains three core modules: the online load
predictor (OLPredictor), the adaptive operator partitioner (AOPartitioner), and
the online partition-based operator parallelism planner (OPPlanner). We use the
AOQOPartitioner to dynamically divide the DAG into partitions. The division is
based on the influence domain of the upstream operators. Then we refer to the
partition results and use the OPPlanner to determine the parallelism of operators
in each partition. Besides, we use the OLPredictor to predict the load of each
partition online to achieve proactive elastic scaling.

The work process of our model mainly contains five stages. Firstly, the Met-
ric Collector collects the dynamic selectivity statistic metrics of theoretically
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Fig. 3. Architecture.

unstable operators, the load metrics of each partition, the parallelism metrics
of operators in each partition covering the load and the resource metrics of
each node, and stores them in MetricDatabase [8]. Secondly, the AOPartitioner
refers to the static selectivity metrics and dynamic selectivity statistic metrics
to evaluate the influence domain of upstream operators and partitions the DAG
adaptively. Thirdly, the OPPlanner uses the load and operator parallelism met-
rics to build the RFR to plan the optimal parallelism of operators in units of
partitions. Fourthly, the OLPredictor uses the load metrics to accurately predict
the load of each partition in the future online. And we input the predicted load
into the OPPlanner to get the optimal operator parallelism of each partition in
the future. Finally, we refer to the scheduler [9] in our previous work to place
the instances of operators in each partition on appropriate nodes.

3.2 AOPartitioner: Adaptive Operator Partitioner

Operator Classification. In DSPSs, a DSPA is usually modeled as a directed
acyclic graph (DAG), expressed as G = (O, D). In a DAG, a vertex represents an
operator o; (o; € O) for data processing and an edge represents the data stream
d;; (dij € D), which flows from operator o; to o;. While the DSPA is running,
the total input rate of the operator o) is 7;,(u). Then it sends the processed
data to its downstream operators. The data output rate to each downstream
operator is 7y (u, v). We use O, to denote the set of downstream operators.
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There are various operators in the DAG, such as transformation, union, fil-
tering operators, and so on. The selectivity of an operator is defined as the ratio
between the data output rate and the total input rate. We divide the opera-
tors into two categories: stable operators and unstable operators, based on their
selectivity as follows.

o} is stable Yo, € Oy, rout(u,v)/rin(u) is constant
o is unstable Fo, € Oy, 1out(u,v)/rin(u) is variable

When the operator is deployed to DSPSs, we can infer its theoretical selec-
tivity based on the operator’s data processing logic, called the static selectivity.
For the theoretically unstable operator, we can get the actual selectivity when
the operator is running, called the dynamic selectivity.

Input and Output. We use s;(0;) to denote the static selectivity metrics of
the operator o;, and s4(0;) to represent the dynamic selectivity statistic met-
rics of unstable operators from MetricDatabase. So we use the dataset Ds, =
{ss(01), s5(02),...} and Ds, = {sq(0;), sa(ok), ...} as the input. We use the op-
erator partition results ¢(p!) = {0j, 0k, ...} as the output, where p! denotes the
1th partition at time ¢.

Partitioning Module. We propose an adaptive operator partitioning algo-
rithm, called AOPA, to partition the DAG during runtime. Our AOPA consists
of two phases: the startup and running phase, as shown in Algorithm 1. In the
startup phase, we use the static selectivity metrics of operators to solve the cold-
start problem of partitioning. At first, we divide the operators into stable and
unstable sets according to the static selectivity. Then, we cut off all the input
edges of their downstream operators for the operators in the unstable set. At
last, we find all connected sub-graphs based on the result of the second step and
aggregate them into a partition. In the running phase, we analyze the dynamic
selectivity statistic metrics of unstable operators during runtime and update
stable and unstable sets to re-partition the DAG.

In AOPA, we use the trend of online statistics to judge the dynamic selectivity
of operators and partition the DAG more accurately. We also present a solution
for the cold-start problem.

3.3 OLPredictor: Online Load Predictor

Input and Output. We predict the multi-step load of partition in the future
with the past multi-step load. We use the dataset X} = {LL-"W+!, Li=W+2 [}
as the input, in which L} = (15~ 18=0+2 1ty In particular, we use ¢ to rep-
resent the current time, h to represent the length of historical time window and
W to represent the number of continuous load sequences. So we use l; as the
load of partition p at time ¢, L; as the load sequence of partition p over the past
h time period and X;, as continuous multi-step sequences of load with size of
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W. Besides, we use the dataset Y} = {I5F*, 1572, II*/} as the output, which
denotes the load of partition p in the future f time period. In addition, we use
the Min-Max scaler to normalize all the load metrics to the range [0,1].

Algorithm 1 AOPA.
Step 1

1: for operator € operatorSet do
2 if operator is theoretically stable then
3 stableSet.put(operator)
4:  else
5 unstableSet.put(operator)
6 end if
7: end for
Step 2
1: for operator € unstableSet do
2 for downOperator € operator.allDownOperators() do
3 downOperator.inactivateAlllnputs()
4:  end for
5 operator.inactivate AllOutputs()
6: end for

Step 3
1: minimalClusters = NewEmptyClusterCollection
2: for operator € operatorSet do
3:  cluster = minimalClusters.findOrBuildNewRelatedCluster(operator)
cluster.add(operator.allActivatedDownOperators ())
cluster.add(operator.allActivatedUpOperators ())
for cOperator € cluster do

if cOperator € minimalCluster then

combine(minimalClusters.getBeforeCluster(cOperator),cluster)
9: end if

10:  end for
11: end for
Step 4

1: while the DSPA is running do

2:  for operator is theoretically unstable do

3: if operator € unstableSet AND operator is stable in the recent period then
4: unstableSet.remove(operator), stableSet.put(operator)

5: end if

6: if operator € stableSet AND operator is unstable in the recent period then
7 stableSet.remove(operator), unstableSet.put(operator)

8: end if

9:  end for
10:  if unstableSet is changed then
11: repeat Step 2 and Step 3
12: end if

13: end while
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Prediction Networks. The load of each partition is a time series that exhibits
long-term trends and short-term fluctuation. In order to capture the short-term
fluctuation characteristics and realize accurate prediction of future load online,
the prediction method is required to update the model quickly and accurately
to give the latest inference results after receiving new data at each moment .

Compared with the existing methods, the meta-learning method [10], combin-
ing the meta-learner and base-learner, can not only learn the long-term regular
characteristics of data but also capture the short-term unique characteristics,
showing powerful nonlinear generalization ability. The Meta-LSTM method [11]
uses the LSTM model as the meta-learner to guide the convolutional neural
network (CNN) base-learner for classification training and achieves good perfor-
mance. In this paper, we use the Meta-LSTM method for online load prediction.
However, the complexity of the CNN model is very high, and it is difficult to
quickly update the model after receiving new data. So we use a simple and ef-
ficient MLP network as the base-learner. We propose a model combining the
LSTM meta-learner with the MLP base-learner.

During the training process, the MLP base-learner trains the arriving small
sample of data to learn the short-term fluctuation characteristics. The LSTM
meta-learner summarizes the training results in the base learner and then pro-
vides the base learner with better initial values on the new data. Specifically,
after receiving new data, we calculate the loss function value and loss function
gradient value of the MLP base-learner and input them into the LSTM meta-
learner to update the cell state. The meta-learner provides updated parameters
to the base-learner.

3.4 OPPlanner: Online Partition-based Operator Parallelism
Planner

Input and Output. We use the output of the OLPredictor Y} = {Ift!, 11+2, ..,
IL+7} and the output of the AOPartitioner ¢(pf) = {0;, 0, ...} as the input of
our OPPlanner. We use ¢(r}) = {(0o;,n;), (0k,nk), ...} to denote the optimal
operator parallelism as the output, in which o; is the operator in the partition

p; and n; is the optimal number of operator instances.

Planning Module. For each partition in the DAG, we collect the metrics of
load and the optimal parallelism of each operator through experiments. The
optimal parallelism of an operator is the minimum number of instances that
can handle the load while meeting the QoS requirements. We spend a long time
collecting data and the dataset is relatively small. Then we build an operator
parallelism planner for each partition. Because the partitions of the DAG change
dynamically over time, the planners are also time-varying. Besides, we need to
update our planning model as we collect more data.

The relationship between the load and the operator parallelism in a partition
is complex and nonlinear. And the dataset we collected is relatively small. In
order to improve the accuracy of modeling and avoid overfitting problems, we use

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-08751-6_53 |



https://dx.doi.org/10.1007/978-3-031-08751-6_53

Allocation based on Dynamic Perception of Operator Influence Domain 9

the ensemble learning method. The ensemble learning method integrates many
weak models to improve the accuracy and robustness, which is effective for small
sample learning.

Compared with the boosting models, such as the Adaptive Boosting (Ad-
aboost) and the gradient boosting decision tree (GBDT) [12], the random for-
est regression (RFR) [7] adopts the bootstrap strategy and has strong anti-
overfitting ability, which performs better. So in this paper, we use the RFR to
build the relationship between the load and operator parallelism in each parti-
tion.

3.5 Scheduler

We use the scheduler from our previous work [9] to place the operators to the
appropriate nodes. We build a cost model to evaluate the total cost of all elastic-
scaling actions for all operators from the start time ts to end time t.. The cost
is defined as:

W= Z W, wWg = Z(CZnZt +chng, + congy) (1)

te[ts,te] oeV

Where ¢, denotes the cost of running an instance of operator o per unit time, n},
denotes the number of instances of operator o running at time ¢, ¢ denotes the
startup cost of an instance of operator o, nj, denotes the number of instances
of operator o that started at time ¢, ¢? denotes the stop cost of an instance of
operator o, and ng, denotes the number of instances of operator o that stopped
at time t.

4 Experiments

4.1 Settings and Datasets

Settings. Our experiments run on a cluster with eight servers. There are two
GPU servers and six CPU servers in the cluster. Both GPU servers are comprised
of 36 cores Intel Xeon CPU E5-2697 v4 2.30 GHz, 256GB memory, two NVIDIA
GeForce GTX 1060ti cards, and 500GB disks. All CPU servers are comprised
of 36 cores Intel Xeon CPU E5-2697 v4 2.30 GHz, 256GB memory, and 500GB
disks. One GPU server is used to run Job Manager and MetricDatabase, and
the other is used to train and evaluate our proposed model. Six CPU servers
are used as Task Manager to run the instances of operators on Kubernetes. The
version of our Kubernetes is v1.22.0.

Datasets. We build four databases from our online DataDock system [8]. The
first database collects the dynamic selectivity statistic metrics of unstable oper-
ators. The second dataset collects the load and the optimal operator parallelism
metrics of each partition to build the OPPlanner. The third dataset collects the

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-08751-6_53 |



https://dx.doi.org/10.1007/978-3-031-08751-6_53

10 F. Liu et al.

load of each partition in 30 days to build the OLPredictor. We divide the dataset
into two sets: a training set (from the beginning to the 20th day), and the test
set (from the 21st day to the last day). The fourth dataset collects the resource
metrics of each node.

We use a real preprocessing application to evaluate the performance of our
algorithm. The DAG of the application is shown in Fig. 4, where the blue oper-
ators are unstable and the green are stable. The operators and edges cover the
operator classification in Section 3.2.

©-0-09®

04 Os

Fig. 4. The DAG of a Real Preprocessing Application.

4.2 Evaluation

To evaluate the performance of resource allocation, we compare our method with
the BriskStream [1], ELYSIUM [5] and Pec [6]. The goal of resource allocation is
to ensure that the latency meets the QoS requirements while reducing resource
utilization. So we use the end-to-end latency guarantee and the total cost to
evaluate the performance of our method.

End-to-End Latency Guarantee. We run the preprocessing application on
the DataDock [8] and record the end-to-end latency of four models. The results
are shown in Fig. 5(a). Compared with other methods, the end-to-end latency
of our model is smaller and always stays stable. As a result of considering the
dynamic correlation of operators in the DAG, we can accurately adjust the par-
allelism of operators in units of partitions before the load changes. So we can
process data stream load in time. While the BriskStream adjusts the parallelism
of an operator after its load changes, which is lagging and increases data pro-
cessing latency. The ELYSIUM and Pec adjust the parallelism of operators in
units of DAG before the load changes, but they refer to the average selectivity
to compute the load of operators for parallelism adjustment, which is inaccurate
and the error is always larger for the more downstream operators.

Total Cost. We calculate the cost of each operator at each epoch and get
the total cost of all operators in a period of epoch. In our experiment, we set
¢ = 8000, c* = 3000 and ¢ = 3000 and collect the times of startup and stop
action of operators.

We take the baseline of BriskStream to get the relative cost. Fig. 5(b) rep-
resents the cumulative relative cost. Fig. 5(c) represents the cumulative startup
and stop times of all operators.
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Fig. 5. The Overall Results of Different Methods.

Compared with other methods, our method costs and adjusts less. The reason
is that we can accurately adjust the parallelism of operators and reduce the
number of startup and stop. Besides, we take the cost of startup or stop into
consideration to improve the cost-effectiveness of adjustment.

4.3 AOPartitioner Evaluation

The AOPartitioner refers to the static selectivity metrics to get the initial parti-
tions, which address the cold-start problem of partitioning. The initial partition
result is depicted in Fig. 6(b). Then we analyze the collected dynamic selectiv-
ity statistic metrics of theoretically unstable operators and find the selectivity
of operator og is constant from epoch 332 to 450, as shown in the red part of
Fig. 6(a). So we re-partition the DAG and the result is depicted in Fig. 6(c).

4.4 OLPredictor Evaluation

To enhance the overall performance, we select the better prediction method
in the OLPredictor. So we compare the prediction performance of our Meta-
learning based OLPredictor with different methods, including separate LSTM,
separate MLP, online support vector regression (SVR), and bidirectional gated
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Fig. 6. The Adaptive Partition Results.

recurrent units (BiGRU) [13]. We use the RMSE and the MAE to evaluate the
performance.

The main parameters in the compared methods are depicted as follows. In
our Meta-learning, we use adam as the optimizer, 0.001 as the learning rate
and 16 as the size of hidden layer for the meta-learner, and use relu as the
activation function, mse as the loss, and 128 as the size of hidden layer for the
base-learner. In the LSTM, MLP, and BIGRU model, we all use relu as the
activation function, adam as the optimizer, mse as the loss, and 128 as the size
of hidden layer. In the online SVR model, we use 200 as the window size, rbf as
the kernel, scale as the gamma, and c is set to 100.0.

The experimental results of the five-step forward prediction of load are shown
in Table 2. For the stable load, these models all get accurate prediction results
with small RMSE and MAE. For the periodic load, the neural networks sig-
nificantly outperform the traditional online SVR, because the neural networks
can learn more latent features from historical data. For the fluctuating load,
our OLPredictor performs better than other models, since our OLPredictor can
not only learn the trend from the historical data, but also quickly capture the
short-term fluctuation characteristics.

Table 2. The Five-step ahead Load Prediction Performance of Different Methods.

Method Stable Load Periodic Load Fuctuating Load
evho RMSE | MAE | RMSE | MAE | RMSE | MAE
Online SVR 0.0348 0.0287 0.0456 0.0330 0.0541 0.0469

MLP 0.0339 0.0273 0.0439 0.0385 0.0515 0.0473
LSTM 0.0389 0.0302 0.0426 0.0353 0.0625 0.0513
BiGRU 0.0343 0.0272 0.0414 0.0324 0.0669 0.0549

OLPredictor | 0.0327 | 0.0258 | 0.0408 | 0.0312 | 0.0502 | 0.0406
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4.5 OPPlanner Evaluation

To enhance the overall performance, we select the better operator parallelism
planning method in the OPPlanner. So we compare the planning performance
of different methods, including the RFR model, the SVR model, the Adaboost
model, and GBDT model.

The main parameters are depicted as follows. In our RFR based OPPlanner,
we set estimators = 100. In the SVR model,we set gamma ='scale’, ¢ = 1.0,
kernel ='rbf’. In the Adaboost model, we set estimators = 150, learning rate =
1.0. In the GBDT model, we set estimators = 100, loss ='ls’. Other parameters
in the models are set to default values.

The performance of the above methods for partitions in Fig. 6(b) is shown
in Table 3. The ensemble learning models, including the RFR, Adaboost, and
GBDT, significantly outperforms the SVR model. The reason is that the ensem-
ble learning models integrate many weak models to learn from a small sample
effectively. Besides, our OPPlanner performs better than other ensemble learn-
ing models, since the bootstrap strategy of RFR avoids overfitting and improves
robustness.

Table 3. The Planning Performance of Each Partition of Different Methods.

Partitions SVR Adaboost GBDT OPPlanner
RMSE 0.0649 0.0642 0.0641 0.0467
P MAE 0.0396 0.0370 0.0370 0.0338
RMSE 0.0764 0.0674 0.0634 0.0591
p2 MAE 0.0676 0.0362 0.0327 0.0312
RMSE 0.0758 0.0714 0.0628 0.0602
b3 MAE 0.0572 0.0357 0.0326 0.0306
RMSE 0.0562 0.0553 0.0548 0.0523
pa MAE 0.0451 0.0214 0.0208 0.0217
RMSE 0.0559 0.0452 0.0541 0.0437
ps MAE 0.0483 0.0143 0.0214 0.0210
RMSE 0.0794 0.0782 0.0714 0.0549
po MAE 0.0452 0.0426 0.0357 0.0345

5 Conclusion

In this paper, we present an elastic resource allocation method based on the
dynamic perception of operator influence domain. It contains three core modules:
the AOPartitioner, the OLPredictor, and the OPPlanner. Firstly, we use the
AOPartitioner to adaptively partition the DAG based on the dynamic influence
domain of upstream operators. Then we use the OLPredictor based on Meta-
learning to get the online multi-step prediction result of load for each partition.
At last, we use the OPPlanner to model the load and the optimal parallelism
of operators in each partition with RFR. The experimental results illustrate our
method is better than the state-of-the-art methods on the real-world datasets.
We can ensure that the end-to-end latency meets the QoS requirements while
reducing resource utilization.
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