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Abstract. A bond-based peridynamic damage model is proposed to in-
corporate the deformation and the damage process into a unified frame-
work. This new model is established based on absolute bond elongation,
and both the elastic and damage parameters of the material are embed-
ded in the constitutive relationship, which makes the model better char-
acterize the process of material damage. Finally, different phenomenons
for various damage patterns is observed by numerical experiments, rich
damage patterns will make this model better suitable for damage simu-
lation.

Keywords: Damage· Peridynamic· Bond-based· Absolute bond elonga-
tion.

1 Introduction

Peridynamic [19] provides an alternative theory to classical continuum mechan-
ics in modeling complex crack problems. Different from the classical continuum
mechanics, the mechanical behavior of the material is characterized by nonlocal
interactions between material points. The spatial derivative of the displacement
in the model is replaced by the integration. It is this feature makes it an advan-
tage in dealing with crack propagation problems. Its effectiveness in modeling
material damage has been shown in numerical simulation of crack nucleation [21],
crack propagation [15] and branching [13,4], phase transformations in solids [6],
impact damage [3] and so on. Mathematical analysis and numerical approxima-
tion of the peridynamic model have been studied in [8,11,9,10,5].

Silling and Askari introduced a peridynamic damage model in [20]. However,
in this model, the damage is a function of the bond stretch (the rate of elonga-
tion), which is not continuous about bond stretch. This brings a lot of trouble to
the well-posedness of the model in mathematics. It is impossible to describe the
process of the bond from elastic deformation to damage and finally failure. Yang
et. al. [7] proposed a damage model to investigate mode-I crack propagation in
concrete by constructing a trilinear softening curve of the bond stretch. For the
first time, Emmrich give a well-posed result for a nonlinear peridynamic model
with Lipschitz continuous pairwise force function [9], and extended it to inherit
irreversible damage [10]. To make the model accurately describe the fracture
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phenomenon, there are two main problems need to be considered. One is how
to involve damage in the constitutive relationship of the material. The other is
the mechanism of crack nucleation in fracture. The absolute bond elongation
contains higher order deformation than the stretch, it can describe deformation
better. It is essential for the peridynamic model to integrate these components
into the model.

Based on the above viewpoints, a peridynamic damage model is established
based on absolute bond elongation, and the fracture criterion based on absolute
bond elongation is also given. By setting the damage term to be continuous,
the well-posedness could be ensured. The ability to treat both the deformation
and damage within the same mathematical framework will make the peridy-
namic model a practical tool to simulate the whole process of the real material
deformation.

This paper is organized as follows. The peridynamic damage model for PMB
(Prototype Microelastic Brittle) material is presented in Section 2. Then, the
damage model based on bond elongation are presented in Section 3. Finally,
numerical experiments are then presented in Section 4, showing that the effects
of different damage patterns on material fracture behavior and further discussing
the peridynamic modeling.

2 The peridynamic theory

The equation of motion for the bond-based peridynamic model is

ρü(x, t) =

∫
Hx

f (u (x′, t)− u(x, t),x′ − x) dVx′ + b(x, t), (x, t) ∈ Ω × (0, T ).

(1)
where ρ denotes the mass density, Hx is the peridynamic neighborhood of x ∈ Ω,
f is the pairwise force function, b is the external force density, the vector
ξ = x′−x denotes the relative position vector between the two material points,
which we call bond. η = u (x′, t)− u(x, t) represents the relative displacement.
The interaction between the material points will decrease with the distance in-
creasing, once the distance between the two material points beyond the horizon
δ, the interaction f(η, ξ) = 0(|ξ| > δ). The bond stretch is the relative change
of the bond, which is defined as follows

s(ξ,η) =
|η + ξ| − |ξ|

|ξ|
. (2)

For PMB material, the pairwise force function is proportional to the bond
stretch. In order to describe the damage phenomenon, a damage indicator is
multiplied in original constitutive relation [20], and the constitutive relation can
be written as

f(η, ξ) = cs(ξ,η)µ(ξ,η)
η + ξ

|η + ξ|
, (3)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_46

https://dx.doi.org/10.1007/978-3-031-08751-6_46


Peridynamic Damage Model Based on Absolute Bond Elongation 3

Then the spring constant c can be expressed with the known material constants
in the classical theory [2]. µ(ξ,η) is the bond damage indicator, and its expression
is

µ(ξ,η) =

{
1, otherwise .
0, ∃ t′ ∈ [0, t], s.t. s (ξ,η(t′)) > s0.

(4)

Here, s0 is critical bond stretch that might be determined from experimental
data. However, since there exists a jump break point at the critical stretch,
which brings the difficulty in the proof of the well-posedness.

3 The peridynamic with damage

In our model, both the elastic and damage parameters of the material are embed-
ded in the constitutive relationship. Besides, the absolute bond elongation con-
tains more deformation information than the bond stretch. The damage model
based on absolute bond elongation is given as follows

f(η, ξ) = ω(|ξ|)e(|η + ξ|, |ξ|)µ(ξ, e) η + ξ

|η + ξ|
. (5)

The ω is the influence function, which reflects that the different bond have effect
on its own force and the material property, e = |η+ξ|− |ξ| is the absolute bond
elongation. Two common forms of influence function in the literature [20,4] are
given as follows.
(a) PMB material: ω(|ξ|) = c

|ξ| . (b) Soda-Lime Glass: ω(|ξ|) = c
|ξ|

(
1− |ξ|δ

)
.

In constitutive relation (5), µ is a function of absolute bond elongation e, and
its forms were constructed by using Hermite interpolation, such as

(i) The function itself is continuous:

µ(e) =


1, if e < λec(|ξ|),
ec−e
ec−λec , if λec(|ξ|) ≤ e ≤ ec(|ξ|),
0, if e > ec(|ξ|).

(6)

(ii) First-order derivative function is continuous:

µ(e) =


1, if e < λec(|ξ|),
1− 3(e−λec)2

(ec−λec)2 + 2(e−λec)3
(ec−λec)3 , if λec(|ξ|) ≤ e ≤ ec(|ξ|),

0, if e > ec(|ξ|).
(7)

(iii) Second-order derivative function is continuous:

µ(e) =


1, if e < λec(|ξ|),
1− 10(e−λec)3

(ec−λec)3 + 15(e−λec)4
(ec−λec)4 −

6(e−λec)5
(ec−λec)5 , if λec(|ξ|) ≤ e ≤ ec(|ξ|),

0, if e > ec(|ξ|).
(8)
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Where λ is the parameter given in the computing process, and ec(|ξ|) is the
critical elongation of each bond. If we assume that ω(|ξ|) has form (a) or (b),
and ec(|ξ|) = d|ξ|s, then the peridynamic damage model based on absolute
bond elongation is obtained. We now turn to determine the model parameters.
It should be noticed that the determination of c is before the damage (µ = 1).

3.1 Determination of elastic constants

Influence function in form (a) Assumed that ω(|ξ|) = c
|ξ| and the body

undergo a homogeneous deformation, that is η = εξ, then the bond elongation
e = ε|ξ|. Therefore, the energy in bond ξ is

Wbond =

∫ ε|ξ|

0

c

|ξ|
e de =

cε2|ξ|
2

. (9)

The energy density at x is

Wnonlocal =
1

2

∫
Hx

WbonddV x
′ =



∫ δ

0

cε2ξ

4
4πξ2dξ =

πcε2δ4

4
, D = 3,

h2

∫ δ

0

cε2ξ

4
2πξdξ =

πch2ε
2δ3

6
, D = 2,

h1

∫ δ

0

cε2ξ

4
2dξ =

ch1ε
2δ2

4
, D = 1.

(10)
Undergo the same deformation, the strain energy density of the classical theory
is

W 3D
classical =

9kε2

2
, W 2D

classical = 2k
′
ε2, W 1D

classical

Eε2

2
. (11)

then we obtain that

c3D =
18k

πδ4
, c2D =

12k
′

πh2δ3
, c1D =

2E

h1δ2
. (12)

where k and k′ is the bulk modulus in 3D and 2D respectively, E is the Young’s
modulus, h1 and h2 is the rod cross-sectional area and plate thickness.

Influence function in form (b) Assumed that ω(|ξ|) = c
|ξ|

(
1− |ξ|δ

)
, then

the energy in bond ξ is

Wbond =

∫ ε|ξ|

0

c

|ξ|

(
1− |ξ|

δ

)
e de =

cε2|ξ|
2

(
1− |ξ|

δ

)
(13)
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The energy density at x is

Wnonlocal=
1

2

∫
Hx
WbonddV x

′=



∫ δ

0

cε2|ξ|
4

(
1− |ξ|

δ

)
4πξ2dξ=

πcε2δ4

20
, D = 3,

h2

∫ δ

0

cε2|ξ|
4

(
1− |ξ|

δ

)
2πξdξ=

πch2ε
2δ3

24
, D = 2,

h1

∫ δ

0

cε2|ξ|
4

(
1− |ξ|

δ

)
2dξ=

ch1ε
2δ2

12
, D = 1.

(14)
Undergo the same deformation, the strain energy density of the classical theory
is

W 3D
classical =

9kε2

2
, W 2D

classical = 2k
′
ε2, W 1D

classical =
Eε2

2
, (15)

then we obtain that

c3D =
90k

πδ4
, c2D =

48k
′

πh2δ3
, c1D =

6E

h1δ2
. (16)

where k and k′ is the bulk modulus in 3D and 2D respectively, E is the Young’s
modulus, h1 and h2 is the rod cross-sectional area and plate thickness.

3.2 Determination of damage constants

If we assume that ec(|ξ|) = d|ξ|s, then we need to determine the parameter d
for bond damage. Assume the bond undergo a elongation such that the bond
broken, The superscripts below are used to represent the energy under different
influence functions and damage patterns. Using following formulation

Wbondbroken =

∫ ec

0

ω(|ξ|)eµ(e) de. (17)

Then the energy in a single bond under different patterns can be written as

• W ai
bondbroken =

cd2|ξ|2s−1(λ2 + λ+ 1)

6
,

• W aii
bondbroken =

cd2|ξ|2s−1(3λ2 + 4λ+ 3)

20
,

• W aiii
bondbroken =

cd2|ξ|2s−1(2λ2 + 3λ+ 2)

14
,

• W bi
bondbroken = cd2|ξ|2s−1

(
1− |ξ|

δ

)
λ2 + λ+ 1

6
,

• W bii
bondbroken = cd2|ξ|2s−1

(
1− |ξ|

δ

)
3λ2 + 4λ+ 3

20
,

• W biii
bondbroken = cd2|ξ|2s−1

(
1− |ξ|

δ

)
2λ2 + 3λ+ 2

14
.

Next, we will obtain the parameters in one, two and three dimensions.
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3D Case The critical energy release rate in 3D case can be expressed as

G0 =

∫ δ

0

∫ 2π

0

∫ δ

z

∫ cos−1z/ξ

0

Wbondbrokenξ
2sinφdφdξdθdz. (18)

Then the damage constant in different influence function and damage patterns
will be calculated as

dai =

√
6(2s+ 3)G0

πcδ2s+3(1 + λ+ λ2)
, dbi =

√
6(2s+ 3)(2s+ 4)G0

πcδ2s+3(1 + λ+ λ2)
,

daii =

√
20(2s+ 3)G0

πcδ2s+3(3 + 4λ+ 3λ2)
, dbii =

√
20(2s+ 3)(2s+ 4)G0

πcδ2s+3(3 + 4λ+ 3λ2)
,

daiii =

√
14(2s+ 3)G0

πcδ2s+3(2 + 3λ+ 2λ2)
, dbiii =

√
14(2s+ 3)(2s+ 4)G0

πcδ2s+3(2 + 3λ+ 2λ2)
.

(19)

2D Case The critical energy release rate in 2D case can be expressed as

G0 = 2h

∫ δ

0

∫ δ

z

∫ cos−1z/ξ

0

Wbondbrokenξdφdξdz. (20)

Then the damage constant in different influence function and damage patterns
in 2D case will obtained as follows.

dai =

√
6G0

chFa(1 + λ+ λ2)
, dbi =

√
6G0

chFb(1 + λ+ λ2)
,

daii =

√
20G0

chFa(3 + 4λ+ 3λ2)
, dbii =

√
20G0

chFb(3 + 4λ+ 3λ2)
,

daiii =

√
14G0

chFa(2 + 3λ+ 2λ2)
, dbiii =

√
14G0

chFb(2 + 3λ+ 2λ2)
,

(21)

where

Fa =
δ2+2s(4s+ 1

1+s +
√
πΓ (−1−s)
Γ (−1/2−s) ) +

2δ2+2s√πΓ (−s)
(2+2s)Γ (−1/2−s)

(1 + 2s)2
, (22)

Fb =
δ2+2s

3 + 5s+ 2s2
, (23)

are the functions used in (21), h is the thickness of the plate. However, there
is Gamma function in (22), which is not exist in some case, we can use three-
dimensional damage parameters as an alternative way.
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1D Case The critical energy release rate in 1D case can be expressed as

G0 = h

∫ δ

0

∫ δ

z

Wbondbrokendξdz. (24)

Then the damage constant in different influence function and damage patterns
in 1D case can be calculated as

dai =

√
6(2s+ 1)G0

chδ2s+1(1 + λ+ λ2)
, dbi =

√
6(2s+ 2)(2s+ 1)G0

chδ2s+1(1 + λ+ λ2)
,

daii =

√
20(2s+ 1)G0

chδ2s+1(3 + 4λ+ 3λ2)
, dbii =

√
20(2s+ 2)(2s+ 1)G0

chδ2s+1(3 + 4λ+ 3λ2)
,

daiii =

√
14(2s+ 1)G0

chδ2s+1(2 + 3λ+ 2λ2)
, dbiii =

√
14(2s+ 2)(2s+ 1)G0

chδ2s+1(2 + 3λ+ 2λ2)
,

(25)

where h is the cross sectional area of the bar.

3.3 Conservation of Energy and Energy Decay

The peridynamic damage model based on absolute bond elongation is given as
follows:

ρü(t,x)=
∫
Ω∪Ωc ω(|x

′ − x|)f(e(t,x,x′, u)µ (e, e∗)M(t,x,x′, u)dx′

+b(t,x),
u(0,x)= w(x), u̇(0,x) = v(x), u (t, ·)|Ωc = 0.

(26)

where ρ is the mass density, the term ωδ(x
′ − x) is the influence function,

f(e(t,x,x′,u)) = ce(t,x,x′,u) reflects the relationship between the magnitude
of the bond force and the bond elongation, e is bond elongation, e∗ is the largest
bond elongation in historical time, µ (e, e∗) denotes the damage, M(t,x,x′,u)
indicates the direction of the bond force, b(t,x) is the body force. Assume that
external forces don’t change over time, the total energy of the system is

E(t) =
1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

ω(|x′ − x|)p(e(t,x,x′,u))dx′dx

+
1

2

∫
Ω

ρ|u̇(t,x)|2dx−
∫
Ω

u(t,x) · b(x)dx.
(27)

where ωδ(|x′ − x|)p(e) is the energy produced by the deformation of a single
bond.

p(e) =

∫ e

0

f(e′)µ(e′, e∗)de′ (28)

Theorem 1. (Conservation of Energy and Energy Decay) If the bond never
broken, the total energy of system (26) is conserved. If the bond broken, the total
energy of system (26) is nonincreasing in time.
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Proof.

dE(t)

dt
=

∫
Ω

ρu̇(t,x) · ü(t,x)dx−
∫
Ω

u̇(t,x) · b(x)dx

+
1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

ωδ(|x′ − x|)f(e)µ (e, e∗) ė(t,x,x′,u)dx′dx

+
1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

ωδ(|x′ − x|)
(∫ e

0

f(e′)
dµ (e, e∗)

de∗
de′
)
ė∗(t,x,x′,u)dx′dx

=

∫
Ω

ρu̇(t,x) · ü(t,x)dx−
∫
Ω

u̇(t,x) · b(x)dx

+
1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

ωδ(|x′ − x|)f(e)µ (e)M(t,x,x′,u)(u̇(t, x′)− u̇(t, x))dx′dx

+
1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

ωδ(|x′ − x|)
(∫ e

0

f(e′)
dµ (e, e∗)

de∗
de′
)
ė∗(t,x,x′,u)dx′dx

=

∫
Ω

ρu̇(t,x) · ü(t,x)dx−
∫
Ω

u̇(t,x) · b(x)dx

−
∫
Ω∪ΩI

∫
Ω∪ΩI

ωδ(|x′ − x|)f(e)µ (e)M(t,x,x′,u)u̇(t, x)dx′dx

+
1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

ωδ(|x′ − x|)
(∫ e

0

f(e′)
dµ (e, e∗)

de∗
de′
)
ė∗(t,x,x′,u)dx′dx

=
1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

ωδ(|x′ − x|)
(∫ e

0

f(e′)
dµ (e, e∗)

de∗
de′
)
ė∗(t,x,x′,u)dx′dx.

In the above process, we need the integrad is continuous. If bond never never
broken, then ė∗(t,x,x′,u) = 0, and dE(t)

dt = 0, the total energy of system (26)
is conserved. When bond broking, because the damage is a nonincreasing func-
tion and the bond can’t recover, dµ

de∗ ≤ 0, then dE(t)
dt ≤ 0, the total energy of

the system is decreasing. So when bondbroken happening, the system will have
the energy decay property, that is said the system consistent with the laws of
thermodynamics.

4 Numerical examples

In this section, numerical examples are given to demonstrate the effectiveness of
the model, and the meshfree method [16] is used to solve the model equation.
First, the body is discretized into material points, and the equation have the
form

ρüi =
∑

p∈Hδ(xi)

f(up − ui,xp − xi)Vp + bi, i = 1, 2, ..., N. (29)

Then, the equation in the time direction can be discretized as follows.

ρ(
un+1
i − 2uni + un−1i

∆t2
) =

∑
p

f(un
p − un

i ,xp − xi)Vp + bni , i = 1, 2, ..., N. (30)
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that is,

ρ(
u̇n+1
i − u̇ni
∆t

) =
∑
p

f(un
p − un

i ,xp − xi)Vp + bni , i = 1, 2, ..., N. (31)

Where

u̇n+1
i =

un+1
i − uni
∆t

. (32)

Therefore, rewriting the above procedure in the following format.

un+1
i = u̇n+1

i ∆t+ uni , i = 1, 2, ..., N. (33)

u̇n+1
i = ün+1

i ∆t+ u̇ni , i = 1, 2, ..., N. (34)

In following numerical experiments, numerical results under different damage
relations are given, and the damage areas are highlighted to show the impact of
different damage on numerical simulation.The damage index φ whose definition
is given by

φ(x, t) = 1−

∫
Bδ(x)

µdVx′∫
Bδ(x)

dVx′
, (35)

where µ is the bond damage factor.

4.1 Example 1

A simple benchmark problem in dynamic fracture is performed using the peridy-
namic damage model based on bond elongation to investigate the influence of
different influence functions and continuity on numerical results. A thin square
plate with a pre-existing crack which subjected to a velocity boundary condition
is given below. To verify the validity of the model and the influence of different
damage models. Numerical simulation results in several modes are presented.
The geometry of the plate can be seen in figure 1, the thickness of the plate
is 0.1 mm, pre-existing crack length is 10 mm at the center. In the process of

Fig. 1. Geometry of the plate with pre-existing crack in the center
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Table 1. Material parameters for the plate

ρ E(Gpa) ν G0(J/m
2)

2450 32 1/3 3.0

computing, grid spacing is 0.1 mm. The mechanical properties of the material
is presented in Table 1. Where E is Young modulus, ν is the Poisson ratio, ρ
is density, and G0 is the critical energy release rate. The uniform normal stress
is applied to the top and bottom edges of the plate perpendicular to the crack.
The figure is the result at 20.05µs, similar experiments can be seen in [1,18].

(a) Numerical result with influence
function a and s = 0.75

(b) Numerical result with influence
function a and s = 1.75

(c) Numerical result with influence
function b and s = 0.75

(d) Numerical result with influence
function b and s = 1.75

Fig. 2. damage is continuous about the bond elongation

Figure 2, 3, 4 show the damage contour plots in the plate when the damage
is zero, first and second-order continuous about the bond elongation, respec-
tively. This may reveal some differences that might arise due to the continuity of
the damage. It is observed from the plots that as the continuity of the damage
increasing, there was little change in the damage contour plots. It can be under-
stood that increasing the continuity doesn’t change the energy in a single bond
breaking a lot. But this might preserve some underlying physical properties.

In figure 2, 3, 4, the subfigure a and b are the result for influence function
(a) with stress 5 Mpa, the subfigure c and d are the results for influence function
(b) with stress 5 Mpa. It should be noticed that when the influence function
changed, the energy in a single bond changed a lot, different crack propagation
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(a) Numerical result with influence
function a and s = 0.75

(b) Numerical result with influence
function a and s = 1.75

(c) Numerical result with influence
function b and s = 0.75

(d) Numerical result with influence
function b and s = 1.75

Fig. 3. damage is first order continuous about the bond elongation

(a) Numerical result with influence
function a and s = 0.75

(b) Numerical result with influence
function a and s = 1.75

(c) Numerical result with influence
function b and s = 0.75

(d) Numerical result with influence
function b and s = 1.75

Fig. 4. damage is second order continuous about the bond elongation
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phenomenon can be observed. When s changed, the energy of bond-breaking
is also changed, so different damage patterns were observed. It is an advantage
that for different physical materials, the real description of physical phenomena
can be achieved by adjusting parameters.

4.2 Example 2

A simple benchmark problem in dynamic fracture is performed using the peridy-
namic damage model based on bond elongation to investigate the effectiveness
of our model. The dynamic crack propagation and branching can be observed in
the numerical simulation. The problem considered here is that of crack branch-
ing in a plate made of glass subjected to sudden stress loading conditions. This
problem has been simulated with peridynamic damage model [12,14,17], and the
experiment result can also be seen in [13]. As shown in figure 5, the setup con-
sists of a plate with a pre-crack from the left edge to the center of the plate.
The material properties considered are in table 2, and the influence function a

Fig. 5. Configuration of the plate

is used in the experiment. The plate is loaded dynamically at the top and bot-
tom surfaces with a sustained stress of 1.2 Mpa. A regular lattice of material
particles is used for the discretization, the lattice spacing of 0.1 mm is used, the
horizon chosen is three times the lattice spacing. Figure 6a shows the damage

Table 2. Material parameters for the plate

ρ E(Gpa) ν G0(J/m
2)

2440 72 1/3 3.8

contour in the plate at 1.2 Mpa. It becomes very clear from this figure that
the crack branching happened. The peridynamic damage model predicts sym-
metrical crack path with simple branching. As it can be seen in figure 6a, this
result coincides with the experiments [13] reported by Ha and Bobaru in Fig.
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(a) Stress σ = 1.2 Mpa (b) Stress σ = 2.4 Mpa

Fig. 6. Crack propagation in the plate with stress σ = 1.2 Mpa, 2.4 Mpa

8. With increasing the applied force, the number of crack branch is increasing.
Figure 6b presents the results while the applied load is increased up to 2.4Mpa.
As observed from the damage plots in figure 6b, a secondary crack branching
is observed by peridynamic model. This result confirms by experiments [13] in
Fig. 8.

5 Conclusions

A new peridynamic damage model is proposed which is based on absolute bond
elongation. In this model, the elastic parameters and damage parameters are
embedded into the constitutive relation, so that the whole process of the material
from elastic to the damage can be modeled. Moreover, the effects of different
influence functions and different damage patterns are investigated numerically.
In particular, a pre-cracked plate under applied traction is simulated to assess
the accuracy of the model and the numerical results agree better with the crack
branching experiment. However, the mechanism of fracture and damage is very
complex, the parameter in this model is depending on the classical model, it is
not accurate for describing the fracture problem. In the future, extending the
model based on experimental and molecular dynamics will enable the model to
effectively describe the practical problem.
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