
Characterizing Wildfire Perimeter Polygons from
QUIC-Fire⋆

Li Tan1, Raymond A. de Callafon1, and Ilkay Altıntaş2

1 Dept. of Mechanical and Aerospace Engineering
University of California San Diego, La Jolla, CA, U.S.A.

{ltan,callafon}@eng.ucsd.edu
2 San Diego Supercomputer Center

University of California San Diego, La Jolla, CA, U.S.A.
{altintas}@ucsd.edu

Abstract. QUIC-Fire is a modern fire simulation tool that can simulate
the progression of three-dimensional fuel consumption over a landscape,
modeling the interaction of a wildfire with weather such as wind condi-
tions around the wildfire. The resulting simulation gives a detailed pro-
gression of the consumed three-dimensional fuel that can be eloquently
mapped to an image of a burn area in the landscape as the wildfire
progresses over time. Although an image of burned vegetation over a
landscape gives detailed information of the activity and coverage area of
a wildfire, a numerical characterization of the boundary of the burn area
can be used for a variety of computations. The boundary of the burn
area, also labeled as the wildfire perimeter, can be parametrized with a
closed polygon. The set of ordered vertices of the closed polygon pro-
vide a compact numerical representation of the location of the wildfire
and can be used for computations related to fire coverage area and mod-
ern wildfire assimilation techniques to improve the prediction of wildfire
progression. Designing a robust algorithm to create a wildfire perimeter
in the form of a set of ordered vertices of a closed polygon around the
image of consumed vegetation in a landscape is not a trivial task. This
paper discusses the properties of two such algorithms: the iterative min-
imum distance algorithm (IMDA) and quadriculation algorithm (QA)
to obtain a closed polygon for a wildfire perimeter. To illustrate the ef-
fectiveness, these two algorithms are applied to multiple image (raster)
data of a burn area in the landscape of a wildfire created by QUIC-Fire
simulations. It is shown that both algorithms are robust in computing
wildfire perimeters, and computational time are less than one second for
each image created by QUIC-Fire. As such, this work contributes to the
development of computational methods to automate the process of char-
acterizing the closed polygon of a wildfire perimeter based on burn area
images.

Keywords: Wildland Fire · QUIC-Fire · Polygons · Automation.

⋆ Work is supported by WIFIRE Commons and funded by NSF 2040676 and NSF
2134904 under the Convergence Accelerator program.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_44

https://dx.doi.org/10.1007/978-3-031-08751-6_44

2 Tan, de Callafon & Altıntaş

1 Introduction

Vegetation dispersed over a landscape is the main fuel component that drives
many wildfires. As a wildfire consumes this fuel under the influence of exter-
nal wind and other weather conditions, it creates a ‘burn area’ or ‘burn scar’
of consumed fuel in the landscape that can cause significant damage, economic
loss and environmental impacts. Clearly, understanding the wildland fire be-
havior and reducing the effects of wildfires by either controlling vegetation via
prescribed burns or improving predicting the progression of a wildland fire are
desirable.

Improving the prediction of wildfire progression has been an active area of
research [7,11,12]. Data assimilation by combining wildfire modeling and ensem-
ble Kalman filter is applied in [4, 15, 17], while several studies on the influence
of wind condition and fuel have been conducted [2, 18, 19]. Many fire behavior
models have been developed to improve the prediction of the wildfire progres-
sion [1, 5, 9, 10, 14], and the focus on controlling wildfires by prescribed burns is
driven by QUIC-Fire [10]. QUIC-Fire can serve as a modern fire simulation tool
to simulate the progression of three-dimensional (3D) fuel consumption over
a landscape, while also approximating the dynamic interaction of a fire with
weather including wind conditions in the atmosphere around the fire. QUIC-
Fire can also takes into account the interactions between multiple fires and can
compute fire progression at the resolution of one meter.

A wildfire perimeter, defined as a closed polygon around the burn area of
a wildfire or prescribed burn, is an important numerical characterization of the
impact of the fire and can be used for a variety of computations. Most wildfire
perimeters are obtained from 2D images [3, 13, 21], while the consumed 3D fuel
created by QUIC-Fire simulation is mapped to a 2D image of a burn area in
the landscape as the wildfire progresses over time. So even for the output of
QUIC-Fire, it is desirable to create an algorithm to compute the closed polygon
of the wildfire perimeter.

Designing a robust algorithm to create a wildfire perimeter in the form of a set
of ordered vertices of a closed polygon around the image of consumed vegetation
in a landscape is not a trivial task. Edge detection methods have been applied to
wildfire images [16,20], but only find a set of unordered boundary points that is
not suitable to produce a closed polygon. In addition, a wildfire perimeter may
include one main closed polygon and multiple additional closed polygons due to
sporadic fire spread caused by embers and no assumption can be made on the
shapes of the polygons. Due to this complexity of multiple wildfire perimeters,
traditional pattern recognition algorithms [6, 8] are not directly applicable.

This paper discusses the properties of two algorithms: the iterative mini-
mum distance algorithm (IMDA) and quadriculation algorithm (QA) to create
a closed polygon of a wildfire perimeter. The IMDA is based on continually con-
necting two closest points in the set of unordered boundary points determined
by conventional image edge detection. A threshold value is set up to assist in
determining whether two points in a cluster are closely located. If one cluster is
far away from other clusters, then it is regarded as a new isolated polygon rep-

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_44

https://dx.doi.org/10.1007/978-3-031-08751-6_44

Characterizing Wildfire Perimeter Polygons from QUIC-Fire 3

resenting a separate fire perimeter due to embers. From a completely different
point of view, the QA creates a polygon by recursively dividing the raster image
into indivisible rectangles, where all the internal pixels of the rectangles have
the same color, and then merging adjacent rectangles that have the same color.
In general, QA avoids the process of ordering the unordered boundary points,
but takes a longer time when merging the different polygons.

2 QUIC-Fire Output Data

As mentioned in the introduction, the focus of this paper is to discuss the prop-
erties of the iterative minimum distance algorithm (IMDA) and quadriculation
algorithm (QA) to obtain closed polygons of wildfire perimeters based on images
of consumed vegetation in a landscape. This section summarizes the QUIC-Fire
output data used for the evaluation of the IMDA and QA. The QUIC-Fire out-
put data consist of images of the fuel densities over a landscape at ground level
(below 10m) at different time stamps (100s, 300s, 500s, 700s, 900s, 1100s) as
a prescribed burn or wildfire progresses. The images of the QUIC-Fire output
data are given in Figure 1.

Fuel_density_100sec

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(a) 100s

Fuel_density_300sec

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(b) 300s

Fuel_density_500sec

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(c) 500s

Fuel_density_700sec

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(d) 700s

Fuel_density_900sec

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(e) 900s

Fuel_density_1100sec

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(f) 1100s

Fig. 1. Fuel densities at different time stamps after the wildfire begins.

From Figure 1, it can be observed that as time increases, the dark blue area
with near zero fuel density becomes larger, which means the fuels are consumed

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_44

https://dx.doi.org/10.1007/978-3-031-08751-6_44

4 Tan, de Callafon & Altıntaş

and the wildfire is spreading. The burn area of the wildfire at different time
stamps can then be detected by comparing the difference of the correspond-
ing fuel densities and the fuel density before the wildfire starts, leading to the
black/white images given in Figure 2.

(a) 100s (b) 300s (c) 500s

(d) 700s (e) 900s (f) 1100s

Fig. 2. Burn area data at different time stamps after the wildfire begins. The white
area is the burn area, and the black area is the unburned area. The scales of the six
plots are selected differently for a better view.

3 Polygon algorithms for wildfire perimeters

3.1 Image data

The burn area at six different time stamps are illustrated in Figure 2. The white
area represents the burn area with y = 1, and the black area represents the
unburned area with y = 0, where

yi,j = f([i, j], b) =

{
0, if b = 0

1, if b > 0
(1)

In (1), [i, j] is a vector providing the position information of the target pixel in
the image, and b is the absolute difference value between the fuel densities at
the current time stamp and before the wildfire starts. The variable y is used to
describe the area (burn area or unburned area) the pixel (at [i, j]) belongs to.

To better cover all possible situations of wildfire and illustrate the perfor-
mances of IMDA and QA, one of the burn area outputs of Figure 2 has been

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_44

https://dx.doi.org/10.1007/978-3-031-08751-6_44

Characterizing Wildfire Perimeter Polygons from QUIC-Fire 5

Fig. 3. Modified output of the QUIC-Fire with extra rectangular burn area. The white
area represents the burn area, and the black area represents the unburned area.

increased in complexity by adding a separate (rectangular) burn area, and re-
moving part of the original burn area, as indicated in Figure 3. The additional
burn area is added to verify if both the IMDA and QA can recognize multiple
wildfire perimeters within the data of Figure 3.

3.2 Quadriculation algorithm

The first method of finding an ordered set of vertices of a closed polygon around
a burn area is the quadriculation algorithm (QA). Inspired by fire simulation
tool FARSITE [5], the QA solves the problem in two main steps of division and
union. Due to the fact that the minimum unit of a rasterized burn area image
is a pixel, QA quadriculates the target image into four squares or rectangles
recursively until all pixels in one square or rectangle have same value y. The
process is illustrated on a simple example in Figure 4(a). It can be observed
that after the first division, only the pixels in the right-top square of the image
have the same value (y = 0). Therefore, another quadriculation is needed. The
second division should be applied on left-top, left-bottom, right-bottom squares
because pixels have different values y = 1 and y = 0 in these three squares, and
no division should be applied on the right-top square.

After the recursive division, the adjacent squares or rectangles with same
value y should be joined, and the perimeter of the polygon in Figure 4(a) can
be obtained in Figure 4(b). With the precision of one meter for QUIC-Fire, the
size of each cell is one meter times one meter. Therefore, the polygon obtained
by QA can be accurate enough to describe the wildfire perimeter. The process
of QA is summarized in Algorithm 1.

Algorithm 1 QA
Input: Fire image
Output: Polygons representing wildfire perimeters
1: Recursively quadriculate the image into four squares or rectangles until all pixels

in one square or rectangle have same value y.
2: Join the adjacent squares or rectangles until the pixels in adjacent squares or

rectangles have different value y.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_44

https://dx.doi.org/10.1007/978-3-031-08751-6_44

6 Tan, de Callafon & Altıntaş

(a) Recursive division. (b) Union.

Fig. 4. Division and union in QA. The dashed red and green lines represents the first
and second division respectively. The red solid line represents the polygon of the wildfire
perimeter. The white and black area are with y = 1 and y = 0 respectively.

The QA is known to take quite some computation time due to two main
steps of division and union that scales up as the image size increases. It would
be beneficial to have an algorithm that can also handle large images with multiple
burn areas. The proposed algorithm is presented in the next section.

3.3 Iterative minimum distance algorithm (IMDA)

Preparatory work The IMDA solves the problem of finding an ordered set of
vertices of a closed polygon around a burn area by selecting and ordering the set
of unordered boundary points. First, a standard image edge detection algorithm
is applied to Figure 3 to acquire the boundary points. The boundary points are
detected by comparing the value yi,j of the target pixel with its surroundings.
An abrupt change in the y value of the pixel expressed by

|yi−1,j − yi,j | ≠ 0 and yi−1,j = 1,

or |yi,j − yi,j−1| ≠ 0 and yi,j−1 = 1,

or |yi+1,j − yi,j | ≠ 0 and yi+1,j = 1,

or |yi,j − yi,j+1| ≠ 0 and yi,j+1 = 1,

and the pixel at i, j can be regarded as a boundary point. Due to the fact that
the precision of the QUIC-Fire data can be as small as one meter, the edge
detection achieves a resolution of one meter.

Naive minimum distance To motivate the IMDA, first consider the simplest
method for the rearrangement of the unordered vertices or boundary points:
choosing an arbitrary starting point and find the closest point to the previous
selected point. In this native minimum distance (NMD) check, an important
requirement is to avoid a self-intersection of the polygon.

With the set of the unordered boundary points B, the starting point b1 is
first selected arbitrarily. Then, remove b1 from the set B, and find a new point

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_44

https://dx.doi.org/10.1007/978-3-031-08751-6_44

Characterizing Wildfire Perimeter Polygons from QUIC-Fire 7

bv (v > 1) with the minimum distance to b1 in B. If the distance between the
last two selected points bv−1 and bv, where v ≥ 3, is larger than the distance
from bv−1 to b1, bv−1 is connected to b1 directly to produce a closed polygon.
To ensure there is no problem of self-intersection, the NMD checks whether the
line segment bv−1bv intersects with any previous created line segments. If there
exists an intersection, the point bv−1 is deleted and connect bv−2bv. This process
iterates until no intersection exists.

During the process of finding bv, two or more points can be found with
same distance to the previous selected point (multi-choice situation). To solve
this problem, each choice will be stored and the corresponding closed polygon
is recorded. The polygon with the largest number of vertices is picked as an
optimal choice because more vertices means more detailed information. If there
are multiple polygons with same number of vertices, more constraints such as
the area of the polygon, can be added to select the optimal polygon.

The main problem for the NMD check is that for each multi-choice situa-
tion, two or more complete polygons that are generated also need to be stored
for comparison purpose. Storing and comparing polygons may be an compu-
tationally expensive process, especially when the numbers of boundary points
and multi-choice situations increase. This problem is illustrated in a simple case
of Figure 5. It can be observed that the red polygon better describes the burn
area than the cyan dashed polygon, and the only difference between these two
polygons is located inside the green dashed rectangle in the figure.

Fig. 5. Two possible polygons after removing self-intersections (red line and cyan
dashed line). The green dashed rectangle shows the two-choice difference.

Next to storing and comparing multiple polygons, the NMD check cannot
deal with the case when a wildfire has multiple disjoint burn areas to create
multiple wildfire perimeters. These problems lead to a modification of the NMD
check and result in the actual IMDA.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_44

https://dx.doi.org/10.1007/978-3-031-08751-6_44

8 Tan, de Callafon & Altıntaş

Computation of ordered vertices of the closed polygon In the computa-
tion of ordered vertices of the closed polygon in IMDA, one initial main polygon
is first obtained by arbitrarily choosing a point in the multi-choice situation. All
left points are used to modify the initial main polygon or create a new isolated
polygon. It is still assumed that all the unordered boundary points can be used
only once, but with one more constraint: the largest distance between two ad-
jacent boundary points should be smaller than d =

√
2 due to point-to-point

pixel distances. Following this distance observation, there are two main steps in
IMDA: the first step is to obtain an initial main polygon, and the second step
is to modify the obtained polygon and decide whether there is an extra isolated
polygon. The logic of each step is described as follows.

For the first step, an arbitrary starting point b1 is selected from the set B of
the unordered boundary points to be the first point of the set P that is used to
restore the ordered vertices of the polygon of a wildfire perimeter. The point with
the minimum distance to the previously selected point in P is chosen from B
and added to P one by one. If there are multiple points with the same minimum
distance to the previously selected point, the first point in order is selected.
During the selection, if no other points in set B have the distance smaller than d
with respect to the last point in P , the distance from the last point in P to the
starting point b1 is checked. If the distance is smaller than d, a closed polygon
is created. On the contrary, if the distance is larger than d, it means the current
trajectory is not correct. Therefore, the last point in P needs to be deleted and
moved to a different set Bc so that this point can be reused again and ordered
correctly. Repeat deleting the last point in P and move it to set Bc until a point
with a distance smaller than d to the updated last point of P can be found in
B, or the updated last point of P has the distance smaller than d to the starting
point b1. The first step is finished by creating an initial closed polygon.

With all the points moved from Bc to B, and clearing the set Bc, the second
step is initiated by finding the nearest point in B to any vertex in P , if the
distance is larger than d, it means no improvement can be achieved by the
initial main polygon, and an isolated polygon exists. Hence, the first step should
be repeated for the updated B to create a new initial polygon. If there exists a
point in B with a distance to the nearest vertex in P smaller than d, it means
the initial closed polygon can be updated. Based on closest vertex in P as the
first point of the trajectory Pc, the nearest point from set B to the last point in
Pc is found. If the distance from the newly detected point in B to the last point
in Pc is smaller than d, then add the newly detected point to the set Pc. If no
more points in B has the distance smaller than d to the last point of Pc, find the
closest point in P to the last point in Pc. If the distance from the closest point
in P to the last point in Pc is smaller than d, add the detected closest point in
P to the set Pc. If the distance is larger than d, delete the last point in Pc, and
add it to Bc until the distance from the closest point in P to the last point in
Pc is smaller than d. Then add the detected closest point in P to the set Pc.

One important thing to note here is that the first point and the last point in
Pc should be different from each other. Based on the first point and the last point

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_44

https://dx.doi.org/10.1007/978-3-031-08751-6_44

Characterizing Wildfire Perimeter Polygons from QUIC-Fire 9

of Pc, add Pc to the initial created polygon. If the previously created polygon
has other vertex between the first point and the last point of Pc, which means
connecting Pc to P will lead to the deletion of previously selected vertices. Then,
whether connecting Pc to P depends on whether connecting Pc will increase the
area of the polygon. If connecting Pc to P can increase the area of the polygon,
Pc is connected to P and replace the corresponding part selected in the first
step. Otherwise, keep P as it is. Iterate this process until there is no point left
in B and Bc. The logic process of the IMDA is summarized in Algorithm 2.

Algorithm 2 IMDA
Input: Unordered boundary points B and threshold value d.
Output: Polygons representing wildfire perimeters
1: Pick the arbitrary starting point b1 in B, and delete b1 in B.
2: Find a closed polygon P based on finding the point with the minimum distance

that is smaller than d to the previously selected point.
3: Find a trajectory Pc when the distance from any point in B to P is smaller than

d.
4: If adding Pc to P will not result in the deletion of the previously selected point in

P , add Pc to P .
5: If adding Pc to P will result in the deletion of the previously selected point in P ,

Pc is added to P when it increases the area of the polygon.
6: Iterate steps 3-5 until no points in B have distance smaller than d to P .
7: Repeat the above steps if there are multiple polygons.

4 Numerical Results

IMDA and QA are applied to the modified burn area data of Figure 3 to verify
the detection of multiple fire perimeters. The resulting closed polygons created
by IMDA and QA are shown in Figure 6. It is clear that both IMDA and QA
produce the two distinct fire perimeters, but it can also be observed that IMDA
provides slightly tighter polygons around the burn area as the polygons are not
restricted to horizontal and vertical lines as in QA.

To further compare the performance of IMDA and QA, the algorithms are
applied to the burn area data of at the six different time stamps of Figure 2. The
visual results are summarized in Figure 7 with the same conclusion: both IMDA
and QA produce correct results, but IMDA provides slightly tighter polygons.
The more telling observations come from Table 1, where it can be seen that
the computation time of IMDA scaled favorably compared to QA as the image
size and the burn area of the wildfire perimeter increases. As reference for the
computation time, all calculations were performed on an Intel Core i7-7500U
CPU with 16 GB RAM.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_44

https://dx.doi.org/10.1007/978-3-031-08751-6_44

10 Tan, de Callafon & Altıntaş

Modified Fire_perimeter_100sec

(a) IMDA (b) QA

Fig. 6. polygons of the wildfire perimeter (red lines). Burn area (white), unburned area
(black), detected boundary points (yellow circles).

(a) 100s (b) 300s (c) 500s

(d) 700s (e) 900s

Fire_perimeter_1100sec

(f) 1100s
Fire_perimeter_100sec

(g) 100s

Fire_perimeter_300sec

(h) 300s

Fire_perimeter_500sec

(i) 500s

(j) 700s (k) 900s

Fire_perimeter_1100sec

(l) 1100s

Fig. 7. Polygons of the wildfire perimeter (red lines). Burn area (white), unburned area
(black) and detected boundary points (yellow circles).

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_44

https://dx.doi.org/10.1007/978-3-031-08751-6_44

https://dx.doi.org/10.1007/978-3-031-08751-6_44

https://dx.doi.org/10.1007/978-3-031-08751-6_44

