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Abstract. Set similarity joins consists in computing all pairs of similar
sets from two collections of sets. In this paper, we introduce an algorithm
called MRSS-join, an extended version of our previous MRS-Join algo-
rithm for the treatment of similarity in the trajectories. MRSS-join algo-
rithm is based on the MapReduce computation model and a randomized
redistribution approach guaranteeing perfect load balancing properties
during all similarity join calculation steps while significantly reducing
communication costs and the number of sets comparisons with regard
to the best known algorithms based on prefix filtering. All our claims
are supported by theoretical guarantees and a series of experiments that
show the effectiveness of our approach in handling large datasets collec-
tions on large-scale systems.
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1 Introduction

The Set Similarity Join (SSJ) consists in finding all the pairs of sets having a
distance smaller than a given threshold. SSJ has a large amount of applications
including data cleaning [4], entity resolution [7], similar text detection [19, 22],
and collaborative filtering [2]. The pruning power of the SSJ is also used to
reduce the number of candidate pairs for edit-based string similarity joins [1].

Formally, the R-S join for two collections R and S of sets from the universe
U is R onλ S = {(u, v) ∈ R × S | Dist(u, v) ≤ λ} where Dist(u, v) is a distance
between u and v, and λ is the threshold parameter. Throughout this paper, a
set u ∈ R ∪ S is called a record and the elements of u are called tokens.

We restrict the scope in this paper to one of the most popular distances in
the literature, namely the similarity function Jaccard. It is defined as follows:
Jaccard(u, v) = ‖u ∩ v‖/‖u ∪ v‖ where ‖·‖ is the cardinality of a set. Note that
by design 0 ≤ Jaccard(u, v) ≤ 1, and Jaccard(u, v) = 1 if and only if u and v
are equals. To satisfy the metric space properties, we define the corresponding
Jaccard distance as DistJ(u, v) = 1− Jaccard(u, v).

Naively, the SSJ computations can be performed by comparing all the data
pairs which requires a Cartesian product computation. This may have a disas-
trous effect on performance and limits their scalability to process large datasets.
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In a BigData context, the amount of data easily exceeds the storage capacity and
the processing capability of a single machine. Accordingly, a cluster of machines
and scalable distributed algorithms are required.

In the literature, we distinguish two classes of SSJ algorithms according to
their result completeness. We refer to algorithms that produce the full similarity
join result as exact and others as approximate. Exact SSJ has received much
attention and an experimental survey has been conducted on the most recent
algorithms [8]. It concludes that none of the evaluated algorithms scale for large
datasets processing.

Approximate SSJ is usually based on Locality Sensitive Hashing (LSH) that
is a randomized method for generating candidate pairs. In the massively parallel
computation model, [11, 12] present an algorithm relying on LSH that achieves
guarantees on the result completeness and balanced load of the processing nodes.
However, it assumes that the dataset is not skewed. This issue is solved by the
MRS-join algorithm [17] that guarantees perfect balancing properties among
the processing nodes while reducing communication costs. MRS-join has been
described to perform similarity joins on trajectories using MapReduce [6]. The
MapReduce paradigm has received a lot of attention for being a scalable parallel
shared-nothing data-processing platform. In order to generalize our framework,
we present MRSS-join that performs set similarity joins using the Jaccard dis-
tance. Furthermore, additional filtering steps and new communication templates
are introduced in the self join case.

The MRSS-join is compared to VernicaJoin (VJ) [21] which is the state-of-
the-art algorithm in terms of runtime and robustness in an exact computation
according to [8]. VJ is a multistep algorithm based on prefix and length filtering.
By sorting records according to the global frequency of tokens, the w-prefix of a
record corresponds to its w first tokens. By determining the prefix sizes depend-
ing on the Jaccard similarity threshold and the record length, a candidate pair
of records can be pruned if their prefixes have no common token. In the exper-
iments, we compare the performance and the quality of the LSH filtering. The
quality is measured in terms of recall and precision. The recall is the fraction of
the number of pairs of similar records correctly produced over the exact number
of similar records, whereas precision corresponds to the fraction of the number
of pairs of similar records correctly produced over the number of candidates.

The remaining of this paper is organized as follows: Section 2 presents require-
ments for the understanding of the MRSS-join algorithm. Section 3 describes the
MRSS-join algorithm. Experimental results presented in Section 4 confirms the
efficiency of our approach. We then conclude in Section 5.

2 Preliminaries

This section is organized as follows: Section 2.1 introduces LSH and its associ-
ated algorithm to perform set similarity joins using LSH; Section 2.2 explains
distributed histograms and randomized communication templates; Section 2.3
presents the MRS-join algorithms based on LSH, distributed histograms and
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randomized communication templates to guarantee a perfect balancing of the
load and computation among the processing nodes while reducing communica-
tion and computation to only relevant data.

2.1 Locality Sensitive Hashing (LSH)

Indyk and Motwani introduced a randomized hashing framework [9, 13] that
solves efficiently the (λ, c)-near neighbor problem even in high dimensional
spaces. It is based on a hashing scheme that ensures that close data points
are more likely to collide than distant ones. More formally, it is characterized by
the following definition.

Let u, v be two records from a common universe U, Dist a distance and λ
the threshold distance parameter. Given an approximation factor c > 1 and
two probabilities p1 and p2 such that 0 ≤ p2 < p1 ≤ 1, H is a family of LSH
functions, if it satisfies the following conditions for any hash function h ∈ H

chosen uniformly:

1. If Dist(u, v) ≤ λ then P[h(u) = h(v)] ≥ p1
2. If Dist(u, v) ≥ c ∗ λ then P[h(u) = h(v)] ≤ p2
Subsequently, we focus on the set similarity join using Jaccard similarity func-
tion, however the approach may be generalized using any LSH family that has
constant probabilities. MinHash [3] is a family of LSH function that estimates
the Jaccard distance. It is defined from a random permutation π of the universe
U. For any element e of U, let note π(e) be the position of e in the permutation
of U. The hashing function h is then defined by h(u) = mine∈u π(e). It is easy
to prove that P[h(u) = h(v)] = Jaccard(u, v).

It is common to concatenate several independent hash functions to improve
precision and use many independent repetitions to improve recall. In a formal
way, let HK be the LSH family in which a hash function is obtained by concate-
nating K ≥ 1 hash functions uniformly and independently selected from H. Ac-
cordingly, it holds that PgK∈HK

[gK(u) = gK(v)] = Ph∈H[h(u) = h(v)]K = pK1 .
K-partition [15, 18] is a variant of MinHash which is efficient to compute

several independent hash functions using a single permutation. The idea is to
partition the permutation into K bins B1, . . . , BK and hi(u) = mine∈u∩Bi π(e).
If u ∩ Bi is empty, hi(u) is the set to the first on right (circular) hj(u) where
u∩Bj is not empty. We refer the reader to [18] for more detailed information. In
the rest of the paper MinHash refers to K-partition one-permutation MinHash.

For now, we have left K unspecified, we primarily review Hu et al.’s algo-
rithm [11, 12] that provides the following load bounds in the massively parallel
computation model.

Theorem 1 ([11, 12]). There is a randomized similarity join algorithm that
runs in O(1) rounds on P processors that reports each join result with at least a
constant probability and the following expected load :

Õ

(√
‖R onλ S‖
P 1/(1+ρ)

+

√
‖R onσ S‖

P
+

N

P 1/(1+ρ)

)
.
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where σ = c ∗ λ, ρ = log(p1)
log(p2)

< 1 and N is the number of inputs.

The corresponding algorithm is given by the three following steps by setting
K =

⌈
log(p1, 1/P

ρ
1+ρ )

⌉
:

1. Randomly and independently select Q hash functions gK1 , gK2 , ..., gKQ from
HK ,

2. For each record u, emit a key/value pair <(i, gKi (u)), u> for all i ∈ 1, ..., Q,
3. Perform a join by treating (i, gKi (u)) as the join attribute value, i.e, two

records u, v join if gKi (u) = gKi (v) for all i. For a pair of records (u, v),
output them if DistJ(u, v) ≤ λ.

The number of repetitions is given by Q =
⌈
p−K1

⌉
in [11] that gives an optimal

output sensitive algorithm. Although result of the similarity join is reported with
at least a constant probability, users may want to generate the full similarity
join result. By setting Q =

⌈
3 ∗ p−K1 ∗ ln(N)

⌉
, the probability to report all join

results is 1−1/N [12]. Thereafter, we prefer to let users specify the desired result
expectation by setting Q =

⌈
E ∗ p−K1

⌉
with 1 ≤ E ≤ 3 ∗ ln(N). This algorithm

forms the basic building blocks of the similarity join using LSH.
For sake of clarity, we introduced the similarity join using LSH between two

collections R and S but in the following, we will consider self joins of a dataset
Γ which aim is to compute Γ onλ Γ . Self joins can be handled as R-S joins from
the LSH side.

2.2 Distributed histograms and communication templates

We first review the notion of distributed histograms introduced in [10] to reduce
communication costs while guaranteeing perfect balancing properties among all
processing nodes. Then, we explain the histogram distribution used in [17]. We
implement the memory extensions following the ideas of [17] to guarantee that
a distributed histogram always fits in processing nodes’ memory. At last, we
introduce communication templates for the self join case in the same spirit as
the ones introduced for the general case [10,17] to which we refer the reader for
further information.

The histogram of a join is defined as the association between a join attribute
value and its frequency. It is used to generate communication templates, allowing
to transmit only relevant data fairly during the join phase. More formally, for
a dataset Γ where L(Γ ) denotes the set of its LSH join attribute values, the
histogram Hist(Γ ) is the list of the pairs <x, fx> where x ∈ L(Γ ) and fx is its
frequency.

In order to reduce communication costs to relevant data, only join attribute
values which might appear in the join result are present in the histogram. Join
attribute values that produce a result imply that their frequencies are greater
than or equal to two. Thus, the histogram for the similarity join Γ onλ Γ which
contains only relevant data is defined as follows.

Definition 1. Hist(Γ onλ Γ ) = {<x, fx>,∀x ∈ L(Γ ) | fx > 1}
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For large datasets, we expect that the corresponding histogram does not fit
in memory. Therefore, [17] introduced a way to distribute it for multiple join
attribute values. The distribution principle is based on the appearance of join
attribute values in different splits where a split is the portion of data that a
map function processes. When constructing the histogram, for all join attribute
values, the split identifiers are also stored. The distribution job requires as many
reduce tasks as the total number of splits. Each join attribute value and its
corresponding entry in the histogram are transmitted for each split identifier.
At the end, each reduce task output corresponds to the distributed histogram
required by a split.

In order to guarantee that a distributed histogram always fits in memory
even in the case of large splits, an additional parameter noted tmax is used. This
parameter is chosen in such a way that each Mapper can buffer a distributed
histogram of size at most Q ∗ tmax. The method consists in constructing groups
of consecutive records in a split so that a group is composed of at most tmax

records. Handling distributed histogram on groups requires no new algorithm.
Essentially, instead of storing only the splits identifiers, the set of pairs (splitId,
groupId) is stored. Later, a pair (splitId, groupId) is called a chunk identifier.
A chunk is the corresponding portion of data. At the end, each reduce task
output corresponds to the sorted list of chunk’s histogram required by a split.

Distributed histograms are then used to reduce communication costs while
guaranteeing perfect balancing properties among all processing nodes. It also
avoids the effects of data skew in large datasets processing. To this end, com-
munication templates use a parameter denoted by fmax. This parameter defines
the number of records that a Reducer will have to store and process during
the similarity join step. Owing to this parameter, the records having a common
join attribute value will be divided into several buckets (blocks), so that each
bucket can be stored in memory. This makes the MRS-join algorithm scalable
and insensitive to the effects of data distribution skew.

For a given join attribute value x, communication templates will distribute
all buckets according to two cases:

a. fx < fmax : the records corresponding to the join attribute value are trans-
mitted to a single Reducer, without special processing, using a hashing ap-
proach.

b. fmax 6 fx : The join attribute value is highly frequent and as illustrated
Figure 1. In order to balance the computations, the join attribute value x is
divided into several blocks (5 on our example).

In Figure 1, the generated communication templates are arranged in rows and
columns. Each cell corresponds to a bucket. Each column corresponds to data
transmitted to a reduce task. These tasks are identified starting from i0 that
is a random integer which can be stored in the histogram. For the sake of the
clarity, it will not be mentioned in the following.

To ensure that the buckets are sorted in the correct order appropriate MapRe-
duce <Key, Value> pairs are used. The keys are composed of the join attribute
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Fig. 1. Communication templates for a highly frequent join attribute value in a self join
case. Distributed buckets (red) are stored to compute the similarity join with replicated
buckets (black).

value, the column and the row identifier. Pairs are then redirected by the MapRe-
duce partition function by means of the reduce task identifier. For a Reducer
task, the join is computed using the following algorithm for a highly frequent
join attribute value:

– Store in memory the distributed buckets (i.e., the row identifier is at zero),
– Compute the join within the stored buckets,
– Compute the join with replicated buckets.

Later, we introduce an additional filtering step to this algorithm in the case of
a highly frequent join attribute value to reduce the number of comparisons.

2.3 MRS-join

MRS-join [17] is an algorithm built on top of the MapReduce framework that
uses LSH, distributed histograms and randomized communication templates to
guarantee balanced load and computation among the processing nodes. It is a
multi-steps algorithm with time and space guarantees for all the join computa-
tion steps.

Input
Dataset

Compute
Keys

Ê

Output
Dataset

Compute
Histogram

Ë

Distributed
Histogram

Compute
Join

Ì

Join
Output

Input Parameter

Jobs HDFS Data

Fig. 2. MapReduce similarity join computation steps.

MRS-join proceeds in 3 steps, each step including one or two MapReduce
jobs. The Figure 2 represents the interactions between the different steps of the
algorithm:
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Ê Compute the LSH join attribute values,
Ë The histogram of the join is computed and distributed to guarantee balanced

communication patterns regardless the data distribution,
Ì By using distributed histograms, efficient and scalable communication tem-

plates are generated and the distance between the pairs identified as similar,
is computed to produce the similarity join output.

The step Ê computes the Q LSH join attribute values, in our implementation it
is performed before steps Ë and Ì. The step Ë is composed of two MapReduce
jobs, the first one is used to compute the histogram of the join and the second to
distribute it. The main difference is that the histogram is constructed for a self-
join and distributed by chunks instead of splits as explained previously. Using
distributed histograms, the step Ì computes the similarity join. To reduce the
number of comparisons, we introduce additional filters during this step in the
MRSS-join algorithm.

For space reason, we do not include a theoretical analysis for each compu-
tation step in the following. However, the load of each Reducer during the last
step of MRSS-join is bounded by Theorem 1. In addition, the MRS-join algo-
rithm has an asymptotic optimal complexity when the maximum cost to read
all distributed histograms corresponding to a Mapper is less than the maximum
cost to transmit all data and to perform the similarity join in a processing node.
We recall that the sizes of distributed histograms are very small compared to
input datasets sizes, and we refer the reader to [17] for more details regarding
the cost model. Using chunks instead of splits to distribute the histogram only
adds to the cost model a constant factor that depends on tmax and the number
of records in a split. By maximizing tmax while ensuring that the corresponding
distributed histograms fit in memory, we expect that using chunks instead of
splits has a limited impact on the size of distributed histograms. Of course, this
is only an intuitive argument that would deserve a detailed cost model.

3 MRSS-join: A scalable set similarity join algorithm
using LSH and MapReduce

We assume that, before the start of the map phase, the Q MinHash functions
are randomly and uniformly selected and stored in the HDFS. The MinHash
function is implemented using Zobrist hashing [23]. Zobrist hashing has been
shown theoretically and practically to have strong MinHash properties while
being fast in practice [5, 20].

The histogram computation job is described in the Algorithm A. To compute
frequency of each join attribute value, the map phase emits, for each record,
and for each join attribute value x, two key/value pairs, allowing to handle
the frequency and the set of chunkId apart. To ensure that the groups within
distributed histograms are sorted in the correct order, a chunkId is implemented
using a 64 bits integer. The first 32 bits correspond to the splitId and the last
ones to the groupId.
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Algorithm A: Histogram computation step
Map: <id, u> → <(x, 0|1), (1|, |chunkId)>

init:
Read from HDFS the Q MinHash functions.

chunkId ← getCurrentChunkId();
Compute the Q LSH join attribute values of the record u.
For each join attribute value x emit the pairs:

- <(x, 0), (1, ∅)>
- <(x, 1), (ε, chunkId)>

Combine: <(x, 0), (1, ∅)*> → <x, (lfx, ∅)>
Compute local frequency using the size of input values.
Emit a pair <(x, 0), (lfx, ∅)>.

Combine: <(x, 1), (ε, chunkId)*> → <x, (ε, chunkId*)>
Compute the set of chunkId.
Emit a pair <(x, 1), (ε, chunkId*)>.

Reduce: <(x, 0), (lfx, ∅)*>
Compute the global frequency of the join attribute value.

Reduce: <(x, 1), (ε, chunkId*)*> → <x, (fx, chunkId*)>
Compute the set of chunkId; whenever the set size exceeds a given limit,
the following pair is emitted and the set cleared.

Emit the pair <x, (fx, chunkId*)> if fx > 1.

Algorithm B: Histogram distribution step
Map: <x, (fx, chunkId*)> → <chunkId, (x, fx)>

Emit a pair <id, (x, fx)> for all id ∈ chunkId*.
Partition: <chunkId, (x, fx)> → Integer

Return the splitId from the chunkId.
Reduce: <chunkId, (x, fx)*> → <chunkId, (x, fx)*>

Compute the set of values received to eliminate duplicates.
Emit a pair <x, fx> for all remaining values.

The Combiner computes the local frequencies and the set of chunkIds of the
current split. Reducers sum up the received local frequencies and filter out join
attribute values that produce no results. The set of chunkIds where the join
attribute value appears is stored to be able to distribute the histogram. Since
the set of chunkIds is computed after the frequency, it does not have to fit in
memory. Duplicate entries may be produced, which will be eliminated during
the distribution step according to Algorithm B. This algorithm relies on the
partition function to distribute the histogram based on the stored split iden-
tifiers. Owing to the parameter tmax, duplicates can be eliminated in memory
during the reduce phase. The similarity join job, described in the Algorithm C,
uses distributed histograms to generate efficient communication templates. The
similarity join is computed by filtering out false positive pairs. It should be
noted that the computation of the Jaccard distance is performed only once for a
pair of records. We introduce additional filtering steps to reduce the number of
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Algorithm C: Similarity join computation step
Map: <id, u> → <(x, reducerId, rowId), (u, LSHKeys)>

init:
Read from HDFS the Q MinHash functions.

Read and store the corresponding distributed histogram of the current
chunkId.

Compute the Q LSH join attribute values of the record u.
Retain only the join attribute values that appear in the distributed
histogram, which we will denote by LSHKeys.

Emit pairs according to communication templates described
previously 2.2.

Partition: <(x, reducerId, rowId), (u, LSHKeys)> → Integer
Redirect each pair according to communication templates.

Reduce: <(x, reducerId, rowId), (u, LSHKeys)> → (id1, id2)
Compute the similarity join using the communication templates.
For each pair of different record:
- Compute the intersection of the sets LSHKeys.
- If the current join attribute value is the minimal among the intersection,
compute the Jaccard distance and output them if the distance is lower
than λ.

comparisons. We distinguish two cases depending on whether the similarity join
computations of a join attribute value are performed by one or several reduce
tasks.

In the case where the similarity join computations are performed by a single
Reducer task, the length filter can be applied [1]. This filter allows only the
Jaccard distance between pairs of records of similar size to be computed. For
this purpose, the length of the records is appended to the transmitted keys during
the join step, allowing the records to be processed in a sorted manner.

In the case of a highly frequent join attribute value, the filtering step relies
on LSH. For a reduce task and a join attribute value, instead of storing the
distributed block, each record is partitioned into FQ buckets using MinHash. The
number of concatenate MinHash function FK is based on FQ and the desired
expectation FE , i.e., formally, FK = logp−1

1
(FQ/FE).

When K < FK , we expect the number of comparisons to be drastically
reduced, resulting in a time saving. However, this time saving is only guaranteed
if the cost of filtering and comparing remaining records is less than the cost of
comparing all records. The filtering cost is increasing with FQ, we set FQ = 32
and FE = 4 in our experiments.

4 Experiments

In this section, we discuss the efficiency and the strength of our theoretical
analysis by experimenting the MRSS-join algorithm on real world and syn-
thetic datasets. We measured the recall and precision as well as the efficiency
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Dataset N Record length Universe Size (B)·105 max avg ·103

AOL 100 245 3 3900 396MB
ENRO 2.5 3162 135 1100 254MB
LIVE 31 300 36 7500 873MB
NETF 4.8 18000 210 18 576MB

ORKUT 2 40000 120 8700 2.5GB
WDC 41 17000 15 184644 5.8GB

UNIFORM 1 25 10 0.21 4.5MB
ZIPF (1.0) 4.4 84 50 100 33MB

ALL 182 40000 21 205962 10.3GB
Table 1. Characteristics of the experimental datasets.

of the MRSS-join compared to the state-of-the-art algorithm. The experiments
were performed using Hadoop 3.2.1 framework on a cluster of 11 machines.
Each machine has the following characteristics: Intel(R) Xeon(R) CPU E5-2650
@2.60GHz, 16Gb of memory, 300Gb of HDD disk and 6Gb as a value for Heap
memory of Map/Reduce tasks. The nodes are connected by a 1Gb/s network.
The map output compression is enabled as well as the output compression. For
the following experiments, the duplicates in the input dataset are removed since
duplicate removal is a different problem from similarity joins. In addition, this
makes our results comparable to the existing surveys [8, 16].

4.1 Performance and results quality

To analyze the performance and the quality of the MRSS-join algorithm, we
used 6 real-world and 2 synthetic datasets. The datasets mainly come from
the survey [16] and the distributed survey [8] on the exact set similarity join.
The entire English relational subset of the WDC Web Table Corpus 2015 [14]
has been added to test the scalability of the algorithms. Textual datasets are
preprocessed to translate original strings to integers using the tools from [16].
Since we focus on the set similarity join, this pre-processing step is not measured
in our experiments. Table 1 presents characteristics of the selected datasets. The
characteristics of the datasets are given by the number of records, the maximum,
and average size of a record and the size of the universe. Records in AOL,
LIVE and WDC datasets are short with a large universe which favors the VJ
algorithm. The token frequencies follow a Zipfian token distribution for most
of real-world dataset, that means a large part of the universe is infrequent.
An exception is the NETF dataset which has few infrequent tokens. The two
synthetic datasets are UNIFORM and ZIPF which are generated to follow a
uniform and a Zipfian token distribution using Zipf factor 1.0 and the generators
from [16]. The dataset ALL is simply the union of the datasets presented above
and is used to test scalability. We used the state-of-the-art algorithm VJ to
compare the performance of MRSS-join. We performed a self join on all previous
datasets by varying the Jaccard similarity threshold in {0.6, 0.7, 0.8, 0.9, 0.95}.
Table 2 shows the average join processing time in seconds over three independent
runs. For each run and practical reasons, we set a timeout of 2 hours, which is
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more than three times the runtime of MRSS-join for all dataset. The letter
“T” denotes that this timeout has been reached for all runs. For the additional
parameters, the desired expectation of generating any output pair is set to E = 2,
and we set ρ = 0.5. For space reasons, we omit the experiments varying these
parameters. However, we have selected parameters that give the best trade-off
between time and quality in our setup.

The processing time for MRSS-join is always lower than the corresponding
processing time of VJ except for AOL. However, in this setting the runtimes are
of the same magnitude. In the remaining cases, MRSS-join achieves a speedup
that can exceed an order of magnitude. Especially, for datasets such as ALL,
NETF, ORKUT and WDC, where VJ fails to compute the similarity join within
the time allocated for one or more similarity thresholds.

More in-depth analysis is given Table 3 that compares the transmitted data
during the communication phase of the joining step between MRSS-join and VJ.
It shows that VJ is inefficient in terms of transmitted data for dataset contain-
ing long records on average as ENRO, NETF and ORKUT. This is due to the
fact that VJ uses prefixes to compute the similarity join which makes it very
sensitive to long records and low similarity join thresholds. This is not the case
in MRSS-join because it is based on LSH framework which is independent of
dimensionality. In addition, we recall that only relevant data is transmitted in
MRSS-join which drastically reduces the transmitted data during the commu-
nication phase of the similarity join step.

In Table 3, the size of transmitted data for ALL and WDC datasets are not
reported for VJ since it failed before the similarity join step. Indeed, to compute
prefixes according to the lowest frequency, VJ constructs the histogram of the
universe. This histogram is then buffered in memory. For datasets with a very
large universe, such as ALL and WDC, memory overloads may occur which
limits its efficiency and scalability. This cannot happen in MRSS-join because
the histogram of LSH join attribute values is distributed and read by chunks
that fit in memory.

Finally, VJ groups intermediate data by prefix token during the joining step.
The size of a group depends on the token frequency thus for large datasets,
a group may hit the memory limit of a Reducer which limits its scalability.
Even in the case of small datasets with few infrequent tokens as NETF, this
limits significantly its efficiency because the join similarity computations are
not well distributed among all the processing nodes. This cannot happen in
MRSS-join because the join computations for a highly frequent join attribute
value, are partitioned into buckets and transmitted to distinct reduce tasks in a
randomized manner. This makes MRSS-join scalable and insensitive to the data
distribution. To achieve these performances, MRSS-join is based on LSH that
produces almost all the results of the similarity join. Table 4 shows the quality
of the LSH filtering by MRSS-join. ZIPF is omitted because the similarity join
produces no result on the queried thresholds since a large part of the tokens are
unique. Each cell reports the recall and the precision values. The full similarity
join is computed using VJ except for ALL and WDC, where we used MRSS-join
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Threshold 0.6 0.7 0.8 0.9 0.95
Dataset VJ MRSS VJ MRSS VJ MRSS VJ MRSS VJ MRSS
AOL 260 383 198 249 172 220 168 195 165 191

ENRO 481 142 341 137 295 136 231 131 196 137
LIVE 480 202 349 177 306 157 227 149 221 147
NETF T 217 2809 172 909 148 460 139 299 143

ORKUT 5176 172 3654 167 2717 154 1183 156 695 153
WDC T 1798 T 831 T 620 T 458 T 401

UNIFORM 175 135 153 129 149 134 145 130 147 134
ZIPF 151 132 152 131 147 125 152 127 156 127
ALL T 2086 T 1043 T 766 T 606 T 549

Table 2. Time in seconds of MRSS-join algorithm compared to VJ algorithm.

Threshold 0.6 0.7 0.8 0.9 0.95
Dataset VJ MRSS VJ MRSS VJ MRSS VJ MRSS VJ MRSS
AOL 455MB 2GB 409MB 1GB 333MB 811MB 255MB 327MB 209MB 133MB

ENRO 16GB 741MB 12GB 403MB 8GB 247MB 4GB 146MB 2GB 78MB
LIVE 13GB 1GB 10GB 762MB 7GB 222MB 3GB 96MB 2GB 45MB
NETF 79GB 3GB 59GB 1GB 40GB 742MB 20GB 9MB 10GB 1MB

ORKUT 234GB 1GB 176GB 780MB 118GB 37MB 59GB 17MB 30GB 12MB
WDC T 14GB T 7GB T 5GB T 2GB T 1GB

UNIFORM 13MB 87MB 10MB 37MB 8MB 28MB 5MB 1MB 4MB 110KB
ZIPF 306MB 51MB 234MB 29MB 161MB 2MB 87MB 20KB 52MB 20KB
ALL T 25GB T 13GB T 8GB T 4GB T 2GB

Table 3. Transmitted data of MRSS-join algorithm compared to VJ algorithm.

with the expectation set to E = 3∗ ln(N). We observe that, MRSS-join achieves
at least 90% recall for all datasets. One can notice, the low values of the precision
in the experiments. These values are not bad due to the fact that, there is no
hashing or sorting techniques allowing to find similar pairs and even for these low
precision values, MRSS-join reduces drastically the number of set comparisons
compared to VJ as shown in the Table 5.

Threshold
Dataset 0.6 0.7 0.8 0.9 0.95
AOL 0.93 | 0.010 0.96 | 0.003 0.96 | 0.003 0.96 | 0.000 0.98 | 0.000

ENRO 0.99 | 0.086 0.99 | 0.124 0.99 | 0.402 0.98 | 0.202 0.97 | 0.355
LIVE 0.93 | 0.027 0.97 | 0.010 0.97 | 0.014 0.98 | 0.033 0.98 | 0.077
NETF 0.96 | 0.001 0.97 | 0.001 0.97 | 0.001 0.96 | 0.015 1.00 | 0.024

ORKUT 0.97 | 0.005 0.98 | 0.003 0.97 | 0.015 0.97 | 0.019 0.97 | 0.017
WDC 0.98 | 0.488 0.98 | 0.032 0.98 | 0.024 0.97 | 0.052 0.98 | 0.063

UNIFORM 0.92 | 0.001 0.96 | 0.001 0.98 | 0.001 1.0 | 0.0 1.0 | 0.0
ALL 0.97 | 0.460 0.98 | 0.030 0.98 | 0.026 0.98 | 0.045 0.98 | 0.049

Table 4. Results quality of the MRSS-join algorithm.

5 Conclusion

In this article, we have introduced MRSS-join an efficient and scalable MapRe-
duce set similarity join algorithm, using LSH and randomized communication
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Threshold 0.6 0.7 0.8 0.9 0.95
Dataset VJ MRSS VJ MRSS VJ MRSS VJ MRSS VJ MRSS
AOL 1.3E+10 1.2E+09 5.5E+09 5.1E+08 1.6E+09 1.4E+08 2.4E+08 3.0E+07 1.2E+08 7.8E+06

ENRO 2.3E+09 2.4E+07 6.2E+08 9.6E+06 1.1E+08 1.8E+06 1.2E+07 5.4E+05 1.8E+06 1.4E+05
LIVE 7.6E+09 1.5E+08 2.1E+09 7.6E+07 4.1E+08 1.1E+07 5.3E+07 7.7E+05 8.9E+06 1.3E+05
NETF 6.4E+10 1.1E+08 2.2E+10 3.9E+07 5.0E+09 3.0E+06 4.6E+08 4.9E+03 4.9E+07 2.6E+02

ORKUT 4.6E+09 4.9E+06 1.1E+09 2.0E+06 1.7E+08 1.4E+05 1.2E+07 2.6E+04 1.5E+06 6.4E+03
WDC T 8.2E+09 T 5.1E+09 T 1.4E+09 T 1.1E+08 T 2.0E+07

UNIFORM 2.4E+09 3.6E+07 1.3E+09 1.9E+07 5.4E+08 5.4E+05 1.1E+08 2.5E+03 3.2E+07 2.4E+02
ALL T 8.2E+09 T 5.5E+09 T 1.4E+09 T 1.3E+08 T 2.7E+07

Table 5. Computed distances of the MRSS-join algorithm compared to the VJ algo-
rithm.

templates approach allowing to reduce drastically the number of sets compar-
isons and communication costs while guaranteeing perfect balancing properties
during all the steps of large datasets similarity join computation.

MRSS-join theoretical guarantees and experiments, using real world and syn-
thetic benchmarks datasets, show that the overhead related to the use both
MinHash and our communication templates remains very small compared to
the gain in performance by reducing communication and data processing to al-
most all relevant data (this avoids sets pairwise comparisons). We showed that,
MRSS-join avoids memory overflows by controlling the size of generated buckets.
This makes the algorithm scalable and insensitive to the data distribution. It also
solves the limitations of existing approaches to handle large datasets whenever
data associated to a MapReduce key cannot fit in the available reducer’s local
memory.

Future work will be devoted to extend MRSS-join algorithm to a more general
purpose framework for most similarity joins operations by using LSH techniques.
We also plan to compute sequences similarity processing in large datasets using
similar techniques based on our randomized MapReduce data redistribution to
balance load among processing nodes while guaranteeing the scalability of the
proposed solutions in large scale systems.
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