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Abstract. We present an algorithm to perform trust-region-based opti-
mization for nonlinear unconstrained problems. The method selectively
uses function and gradient evaluations at different floating-point precisions
to reduce the overall energy consumption, storage, and communication
costs; these capabilities are increasingly important in the era of exascale
computing. In particular, we are motivated by a desire to improve com-
putational efficiency for massive climate models. We employ our method
on two examples: the CUTEst test set and a large-scale data assimilation
problem to recover wind fields from radar returns. Although this paper
is primarily a proof of concept, we show that if implemented on appro-
priate hardware, the use of mixed-precision can significantly reduce the
computational load compared with fixed-precision solvers.

1 Introduction
Optimization methods are used in many applications, including engineering,
science, and machine learning. The memory requirements and run time for
different methods have been studied extensively and determine the problem sizes
that can be run on existing hardware. Similarly, the energy consumption of each
method determines its cost and carbon footprint, which is a growing concern [1].

With the desire to incorporate more data into models and ever-increasing
computational power, problem scales have grown as well. To improve efficiency,
modern computers tightly integrate graphical processing units (GPUs) and other
accelerators. Many of these units natively support data types of differing precision
to lessen the storage and computational load. Previous work has found significant
differences in the overall energy consumption for double- and single-precision
computations [2, 3]. Server-level products such as NVIDIA Tensor cores in V100
GPUs show 16× improvement over traditional double precision [4].

Such gains come at a cost, however. Classical algorithms such as the Gram–
Schmidt process are well known to suffer from loss of orthogonality and numerical
instability due to limited precision [5]. In an effort to ameliorate algorithmic
issues with accuracy and stability, there has been a flurry of activity using mixed
precision. These methods utilize multiple data types in a principled fashion to
reduce the computational burden without sacrificing accuracy. A few of the many
applications are tomographic reconstruction [6], seismic modeling [7], and neural
network training [8–11]. Mixed-precision methods have been used generically
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2 R.J. Clancy et al.

to minimize the cost of linear algebra methods [4], iterative schemes [12], and
improved finite element solvers [13].

There are a variety of auto-tuning algorithms that attempt to identify variables
within a program that can safely be cast in a lower precision, while satisfying
some accuracy constraint [14–18]. Our method proposed does not attempt to
identify low precision candidates nor do we try satisfying accuracy constraints. All
computation within the objective/gradients are performed in the lowest precision
possible and only increase after it is deemed necessary for the solver to proceed.

A recent paper by Gratton and Toint [19] illustrates potential savings in
an optimization setting via variable-precision trust region (TR) methods. We
investigate the ideas proposed in their work but with an important difference. In
particular, their algorithm (TR1DA) requires access to an approximate objec-
tive, f̄(xk, ωf,k), and gradient, ḡ(xk, ωg,k), where ωf,k and ωg,k are uncertainty
parameters (for the kth iterate xk) that satisfy

|f̄(xk, ωf,k)− f(xk)| ≤ ωf,k and
∥ḡ(xk, ωg,k)− g(xk)∥
∥ḡ(xk, ωg,k)∥

≤ ωg,k.

Their error model requires user specified absolute error bounds on function and
gradient values; such bounds are difficult to realize in practice as computational
complexity grows for reasons such as catastrophic cancellation and accumulated
round-off error. Our focus here is on designing an algorithm that performs well
without assumptions on the output error when using lower precision.

In this paper, we introduce TROPHY (Trust Region Optimization using
a Precision HierarchY), a mixed-precision TR method for unconstrained op-
timization. We provide practically verifiable conditions intended to determine
whether the error related to a current precision level may be interfering with the
dynamics of the TR algorithm. If the conditions are not satisfied, we increase
the precision level until they are. Our goal is to lighten the computational load
without sacrificing accuracy of the final solution. By using a limited-memory,
symmetric rank-1 update (L-SR1) to the approximate Hessian, the method is suit-
able for large-scale, high-dimensional problems. We compare the method with a
standard TR method—supplied with access to either a single- or double-precision
evaluation of the function and gradient—on the Constrained and Unconstrained
Testing Environment with safe threads (CUTEst) test problem collection [20]
and on a large-scale weather model based on the PyDDA software package [21].

Since computational, storage, and communication savings are based on hard-
ware implementations of different precision types rather than assumed theoretical
values, our primary metric for comparison will be adjusted function evaluations
rather than time. Simply put, adjusted function evaluations discount computa-
tions performed in lower-precision levels. The goal here is to provide a proof of
concept for computational gains attainable by exploiting variable precision in TR
methods. In practice, improvements in energy consumption, time, communication,
and memory must be realized through optimized hardware which is beyond the
scope of this paper.
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2 Background
Consider the unconstrained minimization of a differentiable function f : Rn → R,

min
x∈Rn

f(x). (1)

We are motivated by problems where the objective and its derivatives are expen-
sive to calculate as is typical for large-scale computing. In this paper we focus
on the TR framework, but could have studied line-search methods instead such
as L-BFGS, which is a popular quasi-Newton method distributed in SciPy [22].
However, it is remarkably simpler to illustrate the effect of error on the quality of
models within a TR method; that is likely the reason TR methods were employed
in [19]. In the following subsections we give an overview of the general framework
for TR methods and describe the model function used in our algorithm.

2.1 Trust Region Methods
Trust region methods are iterative algorithms used for numerical optimization. At
each iteration (with the counter denoted by k), a model function mk : Rn → R
is built around the incumbent point or iterate, xk, such that mk(0) = f(xk) and
mk(s) ≈ f(xk + s). The model, mk, is intended to be a “good” local model of f
on the trust region, {s ∈ Rn : ∥s∥ ≤ δk} for δk > 0. We refer to δk as the trust
region radius. A trial step, sk, is then computed via a(n approximate) solution to
the trust region subproblem,

sk = argmin
∥s∥≤δk

mk(s), (2)

for s ∈ Rn. By an approximate solution to the TR subproblem (2), we mean that
one requires the Cauchy decrease condition to be satisfied:

f(xk)−mk(sk) ≥
µ

2
min

{
δk,
∥gk∥
C

}
, (3)

where µ and C are constants and gk = ∇m(xk). A common choice for mk is a
quadratic Taylor expansion, namely, mk(s) = f(xk) + gT

k s+
1
2s

T∇2f(xk)s. In
practice, ∇2f(xk) is typically replaced with a (quasi-Newton) approximation.

Having computed sk, the standard TR method then compares the true
decrease in the function value, f(xk)− f(xk + sk), with the decrease predicted
by the model, mk(0)−mk(sk). In particular, one computes the quantity

ρk =
f(xk)− f(xk + sk)

mk(0)−mk(sk)
. (4)

If ρk is sufficiently positive (ρk > ηgood for fixed ηgood > 0), then the algorithm
accepts xk + sk as the incumbent point xk+1 and may possibly increase the TR
radius δk < δk+1 (if ρk > ηgreat for fixed ηgreat ≥ ηgood). This scenario is called
a successful iteration. On the other hand, if ρk is not sufficiently positive or is
negative (ρk < ηgood), then the incumbent point stays the same, xk+1 = xk,
and we set δk+1 < δk. For the experiments below, we chose ηgood = 10−5 and
ηgreat = 0.10. This process is iterated until a stopping criterion is met, e.g., when
the gradient norm ∥∇f(xk)∥ is below a given tolerance. Under mild assumptions,
TR methods asymptotically converge to stationary points of f(x) [23].
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2.2 Model Function

The model function, mk, must be specified for a TR algorithm. Popular choices
include linear or quadratic approximations of the objective using Taylor series or
interpolation methods; the latter are often employed in derivative-free optimiza-
tion [24]. Since many applications of interest are high-dimensional or have costly
objective and derivative functions, it is difficult if not impossible to compute
and/or store the Hessian matrix for use in quadratic TR models with memory
requirement scaling as O(n2). A common technique that exploits derivative
information while keeping the cost low is to use curvature pairs given by sk
and yk = ∇f(xk + sk)−∇f(xk). After each successful iteration, the curvature
pairs are used to update the current approximate Hessian denoted by Hk. These
updates employ secant approximations of second derivatives. Common update
rules include BFGS, DFP, and SR1 [25].

In this work we use a limited-memory symmetric rank-1 update (L-SR1) to
the approximate Hessian. This update rule requires the user to set a memory
parameter that specifies a number of secant pairs to use in the approximate
Hessian. Since we require only a matrix-vector product and not the explicit
Hessian, we can implement a matrix-free version reducing the storage cost to
O(n). Thus, our TR subproblem is

sk = argmin
∥s∥≤δk

sT∇f(xk) +
1

2
sTHks, (5)

which we recast and approximately solve using the Steihaug conjugate gradient
method implemented in [26][Appendix B.4].

In the next section we describe the dynamic precision framework and present
criteria for when precision should switch. We then are prepared to give a formal
statement of TROPHY. In Section 4 we describe the problems on which we have
tested TROPHY, and in Section 5 we discuss the results of our experiments.

3 Method
We assume access to a hierarchy of arithmetic precisions for the evaluation of
both f(x) and ∇f(x), but the direct (infinite-precision) evaluation of f(x),∇f(x)
is unavailable. We formalize this slightly by supposing we are given oracles that
compute fp(x),∇fp(x) for p ∈ {0, . . . , P}. With very high probability, given a
uniform distribution on all possible inputs x, the oracles satisfy the inequalities

|fp(x)−f(x)| > |fp+1(x)−f(x)|, ∥∇fp(x)−∇f(x)∥ > ∥∇fp+1(x)−∇f(x)∥.

For a tangible example, if intermediate calculations involved in the computation
of f(x) can be done in half, single, or double precision, then we can denote f0(x),
f1(x), and f2(x) as the oracles using only half, single, or double, respectively.

To build on the generic TR method described in Section 2, we must specify
when and how to switch precision. We can identify two additional difficulties
presented in the multiple-precision setting. First, it is currently unclear how to
compute ρk in (4) since our error model assumes we have no access to an oracle
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TROPHY: Trust Region Optimization Using a Precision Hierarchy 5

that directly computes f(·). Second, because models mk typically use function
and gradient information provided by f(·) and ∇f(·), we must specify how to
construct models using lower precision oracles.

For the first of these two issues, we make a practical assumption that the
highest level of precision available to us should be treated as if it were
infinite precision. Although this is a theoretically poor assumption, virtually all
computational optimization makes it implicitly; algorithms are analyzed over the
real numbers but are typically implemented using floating point arithmetic (often
double). Thus, in the notation we have developed, the optimization problem we
actually aim to solve is not (1) but

min
x∈Rn

fP (x), (6)

so that the ρ-test in (4) is replaced with

ρk =
fP (xk)− fP (xk + sk)

mk(0)−mk(sk)
=

aredk
predk

. (7)

The values ared and pred were introduced to denote “actual reduction” and
“predicted reduction”, respectively. We note that computing (7) still entails two
evaluations of the highest-precision oracle, fP (·), which is exactly what we hoped
to avoid by using mixed-precision. Our algorithm avoids the cost of full-precision
evaluations by dynamically adjusting the precision level pk ∈ {0, . . . , P} between
iterations so that in the kth iteration, ρk is approximated by

ρ̃k =
fpk(xk)− fpk(xk + sk)

mk(0)−mk(sk)
=

eredk
predk

, (8)

introducing ered to denote “estimated reduction”. To update pk, we are motivated
by a strategy similar to one employed in [27] and [28]. We introduce a variable
θk that is not initialized until the end of the first unsuccessful iteration and set
p0 = 0. When the first unsuccessful iteration is encountered, we set

θk ← |aredk − eredk| . (9)

Notice that we must incur the cost of two evaluations of fP (·) following the
first unsuccessful iteration in order to compute aredk. From that point on, θk
is involved in a test triggered on every unsuccessful iteration (in which the TR
radius is sufficiently small) to determine whether the precision level, pk, should
be increased. We compute θk and test for precision when δk < ∆prec. The value
∆prec is set to be a length scale where numerical imprecision is a concern.

Introducing a predetermined forcing sequence {rk} satisfying rk ∈ [0,∞)
for all k and lim

k→∞
rk = 0, and fixing a parameter ω ∈ (0, 1), we check on any

unsuccessful iteration whether

θωk ≤ ηmin {predk, rk} , (10)

where η = min {ηgood, 1− ηgreat}. If (10) does not hold, then we increase pk+1 =
pk + 1 and again update the value of θk according to (9) (thus incurring two

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_32

https://dx.doi.org/10.1007/978-3-031-08751-6_32


6 R.J. Clancy et al.

more evaluations of fP (·)). The reasoning behind the test in (10) is that if (the
unknown) ρk in (7) satisfies ρk ≥ η, then

η ≤ ρk =
aredk
predk

≤ |aredk − eredk|+ eredk
predk

≈ θk + eredk
predk

=
θk

predk
+ ρ̃k. (11)

Thus, for the practical test (8) to be meaningful, we need to ensure that
θk/predk < η, which is what (10) attempts to enforce. The use of ω and the
forcing sequence in (10) is designed to ensure that we eventually do not tolerate
error, since (11) involves an approximation due to the estimate θk. The forcing
sequence would likely be necessary to guarantee convergence for theoretical anal-
ysis, but is not critical to the performance of a practical algorithm, and was not
employed in our implementation. For concreteness, if a forcing sequence were
employed, one might consider a slowly decaying sequence such as rk = 1/

√
k.

It remains to describe how we deal with our second identified difficulty, the
construction of mk in the absence of evaluations of f(·) and∇f(·). As is frequently
done in trust region methods, we will employ quadratic models of the form

mk(s) = fk + g⊤
k s+

1

2
s⊤Hks. (12)

Having already defined rules for the update of pk through the test (10), we take in
the kth iteration fk = fpk(x) and gk = ∇fpk(x). In theory, we require Hk to be
any Hessian approximation with a spectrum bounded above and below uniformly
for all k. In practice, we update Hk via L-SR1 updates [29]. By implementing a
reduced-memory version, we need not store an explicit approximate Hessian, thus
greatly reducing the memory cost and significantly accelerating the matrix-vector
products in our model. Pseudocode for TROPHY is provided in Algorithm 1.

4 Test Problems and Implementations
Our initial implementation of TROPHY is written in Python. To validate the
algorithm, we focus on a well-known optimization test suite and a problem
relating to climate modeling. In all cases, the algorithms terminate when one
of the following conditions are met: (1) the first-order condition is satisfied,
namely, ∥∇fP (xk)∥ < ϵtol; (2) the TR radius is smaller than machine precision,
namely, δk < ϵmachine; or (3) the first two conditions have not been met after
some maximum number of iterations. Condition 1 is a success whereas conditions
2 and 3 are failed attempts. We describe the problem setup and implementation
considerations in the current section and then discuss results in Section 5.

4.1 CUTEst
Our first example used the CUTEst set [20], which is well known within the
optimization community and offers a variety of problems that are challenging to
solve. Each problem is given in a Standard Input Format [30] file that is passed
to a decoder from which Fortran subroutines are generated. The problems can
be built directly by using single or double precision, making the set useful for
mixed-precision comparison.
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TROPHY: Trust Region Optimization Using a Precision Hierarchy 7

Algorithm 1: TROPHY
Initialize 0 < ηgood ≤ ηgreat < 1, ω ∈ (0, 1), γinc > 1, γdec ∈ (0, 1),
∆prec ∈ (0, 1), forcing seq. {rk}.

Choose initial δ0 > 0, x0 ∈ Rn.
θ0 ← 0, pk ← 0, k ← 0, failed← FALSE
while some stopping criterion not satisfied do

Construct model mk.
(Approximately solve) (2) to obtain sk.
Compute ρ̃k as in (8).
if ρ̃k > ηgood (successful iteration) then

xk+1 ← xk + sk.
if ρ̃k > ηgreat (very successful iteration) then

δk+1 ← γincδk.
end

else
if not failed then

Compute θk as in (9).
failed← TRUE.

end
if (10) holds or δk ≥ ∆prec then

δk+1 ← γdecδk.
else

pk+1 ← pk + 1.
Compute θk as in (9).
δk+1 ← δk.

end
xk+1 ← xk.

end
k ← k + 1.

end

Python Implementation of CUTEst: The PyCUTEst package [31] serves as
an interface between Python and CUTEst’s Fortran source code. The problems
are compiled via the interface; then Python scripts are generated and cached
for subsequent function calls. Although CUTEst natively supports both single-
and double-precision evaluations, at the time of writing, the single-precision
implementations are concealed from the PyCUTEst API.

To access single-precision evaluations, we used PREDUCER [32], a Python
script written to compare the effect of round-off errors in scientific computing.
PREDUCER parses Fortran source code and downcasts double data types to
single. To allow for its use in existing code, all single data types are recast to
double after function/gradient evaluation but before returning to the calling
program. Because of the overhead associated with casting operations, we do not
expect improvements in computational time. However, performance gains in terms
of both accuracy and a reduction in the number of adjusted function calls for an
iterative algorithm should be realized. We built the double-precision functions,
too, and wrapped both functions to pass as a unified handle to TROPHY.
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8 R.J. Clancy et al.

For the subset of unconstrained problems with dimension less than or equal
to 100, we ran TROPHY with single/double switching along with the same TR
method using only single or double precision. Our first-order stopping criterion
was ∥∇fP (xk)∥ < 10−5, and the maximum number of allowable iterations was
5,000. We show results for problems solved by at least one TR in Section 5.

Julia Implementation of CUTEst: The Julia programming language supports
variable-precision floating-point data types. More precisely, it allows users to
specify the number of bits used in the mantissa and expands memory for the
exponent as necessary to avoid overflow. This is in contrast to the IEEE 754
standard that uses 11 (5), 24 (8), and 53 (11) bits for the mantissa (exponent) of
half-, single-, and double-precision floats, respectively. In practice, one can assign
enough bits for the exponent to avoid dynamic reallocation.

To exploit variable precision, we hand-coded several of the unconstrained
CUTEst objectives in Julia and then computed gradients with forward-mode
automatic differentiation (AD) using the ForwardDiff.jl package [33]. We wrote
a Julia port that allows us to call this code from Python for use in TROPHY.
We opted to use forward-mode AD for its ease of implementation. In all cases
used, the hand-coded Julia objective and AD gradient were compared against
the Fortran implementation and found to be accurate.

We compared TROPHY with TR methods using a fixed precision of half,
single, and double precision (11, 24, and 53 bits, respectively). We used the same
first-order condition of ∥∇f(xk)∥ < 10−5 but allowed this implementation to run
only for 1,000 iterations. For TROPHY, we used several precision-switching sets:
{24, 53}, {11, 24, 53}, {8, 11, 17, 24, 53}, and {8, 13, 18, 23, 28, 33, 38, 43, 48,
53}. The third set of precisions was motivated by the number of mantissa bits
in bfloat16, fp16, fp24, fp32, and fp64, respectively. The last set increased the
number of bits in increments of 5 up to double-precision.

4.2 Multiple Doppler Radar Wind Retrieval:
We also looked at a data assimilation problem for retrieving wind fields for con-
vective storms from Doppler radar returns. Shapiro and Potvin [34, 35] proposed
a method for doing so that optimizes a cost functional based on vertical vorticity,
mass continuity, field smoothness, and data fidelity, among others. Although
the function calls are fairly simple, the wind field must be reconciled on a 3-D
grid over space, each with an x, y, and z component. For a 39× 121× 121 grid,
there are 1, 712, 997 variables. Therefore, reducing computational, storage, and
communication costs where possible is paramount.

Our work centered on the PyDDA package [21], which was written to solve
the aforementioned problem. We amended the code in two significant ways.
First, to improve efficiency, we rewrote portions of the code to use JAX, an
automatic differentiation package using XLA that exploits efficient computation
on GPUs [36]. Since JAX natively supports single precision on CPUs and can be
recast to half and double as desired, it nicely serves as a proof of concept on a
real application. Second, we modified the solver to use TROPHY rather than the
SciPy implementation of L-BFGS.
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TROPHY: Trust Region Optimization Using a Precision Hierarchy 9

Once again, we compared TROPHY against single- and double-precision
TR methods. TROPHY switched among half, single, and double precision. To
avoid overflow initially for half-precision, we warm started the algorithm by
providing it with the tenth iterate from the double-precision TR method, i.e.,
x10. We perturbed this initial iterate 10 times and used the perturbed vectors
as the initial guess for each algorithm (including double TR). We measured the
average performance when solving each problem to different first-order conditions:
∥∇f(xk)∥ < 10−3 and ∥∇f(xk)∥ < 10−6. The maximum number of allowable
iterations was 10,000.

5 Experimental Results
We display results across the CUTEst set using data and performance profiles
[37, 38]. For a given metric, performance profiles help determine how a set of
solvers, S, performs over a set of problems, P. The value vij > 0 denotes a
particular metric (say, the final gradient norm) of the jth solver on problem i.
We can then consider the performance of each solver in relation to the solver
that performed best, that is, the one that achieved the smallest gradient norm.
The performance ratio is defined as

rij =
vij

minj{vij}
. (13)

Smaller values of rij are better since they are closer to optimal. The performance
ratio was set to ∞ if the solver failed to solve the problem. We can evaluate the
performance of a solver by asking what percentage of the problems are solved
within a fraction of the best. This is given by the performance profile,

hj(τ) =

∑N
i=1 I{rij≤τ}

N
,

where N = |P| (the cardinality of P) and I{A} is the indicator function such
that I{A} = 1 if A is true and 0 otherwise. Hence, better solvers have profiles
that are above and to the left of the others.

Motivated by the computational models in [2] and [3], we assume that the
energy efficiency of single precision is between 2 and 3.6 times higher than
double precision [39, 40]. The storage and communication have less optimistic
savings since we expect the cost of both to scale linearly with the number of bits
used in the mantissa. Accordingly, we focus primarily on the model where half-
and single-precision evaluations cost 1/4 and 1/2 that of a double evaluation,
respectively. This gives a conservative estimate for energy cost and a favorable
one for execution time. For a given problem and solver, we define adjusted calls :

Adj. calls =
∑

p ∈ {0,1,...,P}

(# bits for prec. p)× (# func. calls at prec. p)
# bits in prec. P

. (14)

Figures 1 and 2 show performance profiles for the Python and Julia imple-
mentations of CUTEst, respectively. All CUTEst problems had their first-order
tolerance set to 10−5. Working from right to left in both images, we can see that
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10 R.J. Clancy et al.

Fig. 1: Performance profiles for Python implementation of unconstrained CUTEst
problems of dimension < 100 solved to first-order tolerance of 10−5. Standard single
and double TR methods compared against TROPHY using single/double switching.

the first-order condition is steady across methods provided that double-precision
evaluations are ultimately available to the solver. When limited to half (11 bits)
or single (24 bits), the performance suffers, and a number of problems cannot
be solved. For the number of iterations in Python, we see that TROPHY and
the double TR method perform comparably. The Julia implementation shows
that the iterations count suffers when using low precision or TROPHY with
many precision levels available for switching. This behavior is expected for low
precision since the solver may never achieve the desired accuracy and hence runs
longer, and for TROPHY since each precision switch requires a full iteration.
For example, if 10 precision levels are available, TROPHY will take at least
10 iterations to complete. This limits the usefulness of the method on small to
medium problems and problems where the initial iterate is close to the final
solution. As anticipated, TROPHY shows a distinct advantage for adjusted calls.
The one exception is when there are many precision levels to cycle through, for
the same reason as above. Although the initial iterate might be close to optimal,
the algorithm must still visit all precision levels before breaking. The fact is
made worse since each time the precision switches, two evaluations at the highest
precision are required. Using two or three widely spaces precision levels yields
strong results for the CUTEst set.

Table 1: Average performance over ten initializations for single-precision TR, double-
precision TR, and TROPHY on PyDDA wind retrieval example. Adjusted calls indicate
improved computational efficiency. Half, single, and double costs are 1/4, 1/2, and 1 for
linear and 1/16, 1/4, and 1 for quadratic adjustments, respectively. Problem solved to
∥∇f(xfinal)∥2 < 10−3 above.

Tolerance
∥∇f∥ < 10−3

Half
calls

Single
calls

Double
calls

Adj. calls
(linear)

Adj. calls
(quad.)

ffinal ∥∇ffinal∥

Single - 3411 - 1706 853 5.3× 10−3 9.5× 10−4

Double - - 1877 1877 1877 4.5× 10−3 9.1× 10−4

TROPHY 465 1898 6 1071 510 4.7× 10−3 9.4× 10−4
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TROPHY: Trust Region Optimization Using a Precision Hierarchy 11

Fig. 2: Performance profiles for Julia implementation of unconstrained CUTEst problems
of dimension < 100 solved to first-order tolerance of 10−5. Half, single, and double are
standard TR methods using corresponding precision. “S,D”, “H,S,D”, “8,11,17,24,53”,
and “Every 5 bits” are TROPHY implementations using different precision regimes.
“Every 5 bits” starts at 8 bits and increases to 53 bits in increments of 5 bits. A finer
precision hierarchy does not imply better performance.

Table 2: Problem solved to ∥∇f(xfinal)∥2 < 10−6 accuracy. The single-precision TR
method failed to converge with the TR radius falling below machine precision.

Tolerance
∥∇f∥ < 10−6

Half
calls

Single
calls

Double
calls

Adj. calls
(linear)

Adj. calls
(quad.)

ffinal ∥∇ffinal∥

Single - ∞ - FAIL FAIL 9.9× 10−7 3.9× 10−6

Double - - 5283 5283 5283 1.8× 10−7 9.6× 10−7

TROPHY 465 7334 601 4384 2464 1.9× 10−7 9.7× 10−8

.

The wind retrieval example shows similar results. The switching criteria used
here differs slightly from the one presented in (10). Specifically, a baseline θpk

is set after the first failed iteration at the current precision level. The model
predicted reduction (predk) is compared to the baseline θpk

for successive failures.
If predk is small compared to the baseline θpk

, then the precision is increased.
We do not expect this to significantly change the qualitative results or behavior
of the method for this test case. We included two “adjusted call” columns: one
for a linear decay adjustment (memory and communication as above) and the
other for quadratic decay (reduction in energy consumption). We originally
iterated until ∥∇f(xk)∥ < 10−6 but observed that the single TR method failed
to converge. Consequently, we loosened the stopping criterion as far as possible
while maintaining the correct qualitative behavior of the solution. TROPHY
outperformed the standard (double-precision TR) method in all cases, reducing
the number of adjusted calls by 17% to 73%.

Our results show a promising reduction in the relative cost over naive single or
double TR solvers. We expect that for many problems where function evaluations
dominate linear algebra costs for the TR subproblem, our time to solve will
greatly benefit from the method.
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6 Conclusion and Future Work
In this paper we introduced TROPHY, a TR method that exploits variable-
precision data types to lighten the computational burden of expensive func-
tion/gradient evaluations. We illustrated proof of concept for the algorithm by
implementing it on the CUTEst set and PyDDA. The full benefit of our work
has not yet been realized. We look forward to implementing similar tests on hard-
ware that can realize the full benefit of lower energy consumption and reduced
memory/communication costs and ultimately shorten the time to solution. This
will be especially beneficial for large scale climate models.

We would also like to incorporate mixed precision into line-search methods
given their popularity in quasi-Newton solvers. By incorporating the same ideas
into highly optimized algorithms such as the SciPy implementation of L-BFGS, we
could easily deploy mixed precision to a wide population, dramatically reducing
computational loads. Although TR methods are, computationally speaking, more
appropriate for expensive-to-evaluate objectives, there is no reason the same
ideas cannot be extended if practitioners prefer them.
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