Scaling the PageRank Algorithm for Very Large
Graphs on the Fugaku Supercomputer

Maxence Vandromme', Jérome Gurhem?, Miwako Tsuji®, Serge Petiton'?, and
Mitsuhisa Sato?

! Univ. Lille, UMR 9189 - CRIStAL, CNRS
F-59000 Lille, France
2 USR 3441 - Maison de la Simulation, CNRS
Saclay, France
3 RIKEN Center for Computational Science
Kobe, Japan

Abstract. The PageRank algorithm is a widely used linear algebra
method with many applications. As graphs with billions or more of
nodes become increasingly common, being able to scale this algorithm
on modern HPC architectures is of prime importance. While most ex-
isting approaches have explored distributed computing to compute an
approximation of the PageRank scores, we focus on the numerical com-
putation using the power iteration method. We develop and implement
a distributed parallel version of the PageRank. This application is de-
ployed on the supercomputer Fugaku, using up to one thousand compute
nodes to assess scalability on random stochastic matrices. These large-
scale experiments show that the network-on-chip of the A64FX processor
acts as an additional level of computation, in between nodes and cores.

1 Introduction

The PageRank algorithm was originally developed to rank Web pages by impor-
tance, as the main component powering Web search engines [16]. It generally uses
the power iteration method to compute the dominant eigenvector of a stochastic
matrix efficiently. In this context, the Web pages and the links between them
form a graph that can be represented by a sparse adjacency matrix, on which the
PageRank is applied. Beyond its historic roots, this algorithm saw widespread
use in applications where data is organized in a graph structure, such as citation
networks [15] or traffic grids [17]. More recently, the (personalized) PageRank
has been used as a tool to weigh communication between nodes in Graph Neural
Networks [12].

The most common method to compute the PageRank exactly is the power
iteration, which relies on iterative sparse matrix-vector multiplication (SpMV)
as its kernel. In this regard, the PageRank bears a resemblance to other lin-
ear algebra methods, such as the conjugate gradient, which is notably used in
the HPCG benchmark to measure the performance of supercomputers with a
focus on memory and interconnections [6,10]. Indeed, the main component of

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-08751-6_28 |



https://dx.doi.org/10.1007/978-3-031-08751-6_28

the conjugate gradient is also sequences of sparse matrix-vector multiplication,
and such methods have direct applications for real-life problems. However, the
HPCG benchmark uses sparse diagonal matrices, that represent the kind of
computational problems arising from physical applications. Such matrices are a
best-case scenario for distributed and parallel computing, since the data is or-
ganized to minimize cache misses. This benchmark is well-suited to measure the
peak optimal performance of HPC systems on graph problems.

In this paper, we focus instead on the PageRank algorithm and its application
to data closer to what can be found in networks or Web graphs. These graphs
are usually much less structured, and as a result, their underlying adjacency
matrices stray quite far from the ideal case of a regular diagonal matrix. Given
the very large size of Web graphs, we need to efficienctly scale the PageRank
algorithm on graphs up to billions of nodes. To this end, we present a parallel
and distributed implementation of the PageRank algorithm, we deploy it on the
top-end supercomputer Fugaku, and measure the scalability of the algorithm up
to very large graph sizes on hundreds of compute nodes.

The rest of this paper is organized as follows:

— in Section 2, we review the relevant existing work on the PageRank algorithm
for distributed settings, and put it in perspective with the recent evolution
of HPC systems

— in Section 3, we present the implementation of the parallel and distributed
PageRank algorithm, and the distributed generation of sparse stochastic
matrices

— in Section 4 we detail the experiments settings on the supercomputer Fugaku,
and discuss the results and insights gained from the experiments. We analyze
the impact of the network-on-chip on the performance by using different MPI
configurations

— in Section 5 we summarize the findings and propose further work to do for
the future

2 Background and related work

The PageRank was designed with scalability as a primary goal. The original
study dealt with a database of 75 million URLs and more than 300 million
links between them, and the size has grown to billions of elements or more since
then. Nevertheless, the number of iterations of the power method remains small
compared to the graph size, and the algorithm usually converges in less than 100
iterations with standard parameters [16].

Despite this efficiency, there has been a growing need to design distributed
versions of the algorithm to keep up with the size increase and better take
advantage of modern HPC systems with many compute nodes. Applying the
standard algorithm in a distributed environment implies splitting the matrix in
parts, running partial computation independently on each node, then aggregat-
ing and distributing the result vector across all nodes between two iterations of
the method. A number of previous studies have noted that the overhead induced

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-08751-6_28 |



https://dx.doi.org/10.1007/978-3-031-08751-6_28

by the communications between the nodes would be a major problem [11, 18]. In-
deed, computational applications on real-world graphs suffer from poor locality,
since the graph structure is irregular, and high data access to computation ratio,
meaning that the performance will be bounded by the data access speed of the
system [14]. On this basis, research in this area mainly focused on distributed
implementations that did not require this type of broadcast communications.

Regarding the PageRank, an original study outlined the future research di-
rections by first providing a solid definition of the algorithm [4]. It then pointed
out that a fully centralised algorithm on a distributed system would incur signif-
icant congestion on the communication network, and that it was not suited for
graphs that evolve over time due to the synchronization costs. The authors then
proposed several versions of distributed algorithms, relying on the parallel execu-
tion of random walks to iteratively approximate the steady state distribution of
the dominant eigenvector underlying the PageRank. Later studies expanded on
these ideas, and notably likened the random walk to a Markov process in order
to reduce the amount of information accumulated from walks and communicated
to other nodes [18]. In another study, the asynchronous updating process was
extended by considering Web pages as agents of a multi-agents system, updating
its PageRank value and passing the information to its outbound links [11]. This
method uses randomization on the information communicated. Other usually
select nodes randomly, from which a walk is started [3].

A related issue is the Personalized PageRank (PPR), where the goal is not
to find the importance of a node i among the whole graph, but the importance
of a node i relative to another node j. Full naive computation of the PPR on
a graph with n nodes requires running the PageRank algorithm n times, which
is irrealistic for large graphs, and implies storing a dense matrix of size n x n,
which is a major issue as well. Therefore, methods have been proposed that also
use Monte Carlo random walks adapted for the PPR [13]. A study used a Graph
Partition Algorithm to distribute the graph on different compute nodes in order
to minimize the links between the subgraphs, and therefore the communications.
Each node would compute its local PageRank on the subgraph, which would then
be used to build the final result vector. Interestingly, it could also be applied
recursively to a hierarchy of subgraphs, allowing for high scalability [7].

The supercomputer Fugaku [5] is #1 in the TOP500 list at the time of the
study. Supercomputers have been shifting towards an increase in the number of
compute nodes rather than increasing the nominal performance of each node.
As a prime example, Fugaku uses more than 150,000 processors. Therefore, par-
ticular attention has been brought to the communication network between the
nodes, in order to alleviate the limitations that communications may place on
computational performance. It uses A64FX processors at 2.2GHz with 32 GB of
HBM2 memory and a memory bandwidth of 1GB/s. Each processor contains 48
compute cores, split into four groups of 12. Each such group is called Core Mem-
ory Group (CMG), and has its own L2 cache and memory. The CMGs inside
a processor are linked by a network-on-chip that handles the communications
between them. The processors are linked by a 6D topology Tofu interconnect [1].

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-08751-6_28 |



https://dx.doi.org/10.1007/978-3-031-08751-6_28

Given the recent developments on these networks, we want to evaluate whether
the communications are still a roadblock to scalability in a highly distributed
environment, using the PageRank application as a test case.

Recent work has been done about the scalability of the sparse matrix-vector
product on the A64FX processor. This operation is the main kernel of the PageR-
ank power iteration method, so it is of prime importance for our study. These
past studies showed great performance on regular diagonal matrices, when using
an adequate storage format taking advantage of the SIMD capabilities of the
processor [2]. The performance decreases quickly as the nonzero elements devi-
ate from the diagonal, due to the aforementioned cost of irregular data access
[8]. These studies used only one or two compute nodes. In this study, we aim to
extend the experiments using many compute nodes, in order to identify the bar-
riers to scalability for large size problems. We also focus on sequences of SpMV
rather than SpMV alone, since these are more directly useful for applications.

3 Parallel and distributed implementation

In this Section, we describe the PageRank algorithm in a distributed parallel
computing environment, and the sparse matrix data storage formats used.

3.1 PageRank

Regular algorithm We focus here on matrices extracted from graphs, where
graphs are objects G = (V, E) where a set of vertices V' are connected by a set
of edges E. A graph can be represented by its adjacency matrix M € IR™*",
where n is the number of vertices (or nodes) in the graph. In such cases, M is
a binary matrix, i.e. all of its elements m;; are either 0 or 1. Given the shape
of large graphs, their adjacency matrices are usually very sparse; that is, the
number of non-zero values is much smaller than the total number of elements
n?, and usually of the order of n.

The PageRank algorithm outputs a unique score for each node of the graph,
based on the graph structure, corresponding to the dominant eigenvector of
the normalized adjacency matrix. A higher score means that the node is more
important in the graph. The most common way to compute this vector exactly
is through the power iteration method, which is essentially a sparse matrix-
vector product on the column-normalized transpose of the adjacency matrix,
repeated until the result varies by less than a threshold e from one iteration
to the next. During each iteration ¢ + 1, the SpMV operation is performed on
the vector b; computed in the previous step ¢, with the initial by being a vector
of ones. by is modified to add an uniform probability of teleportation to any
node of the graph, using the 8 parameter, and then normalized. The PageRank
algorithm can be seen as a random walk over the graph. In this context, the
teleportation corresponds to the probability, at each step, to restart the random
walk at another node of the graph. This mechanism is mainly used to avoid
getting stuck in sink nodes, i.e. nodes without outbound edges.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-08751-6_28 |



https://dx.doi.org/10.1007/978-3-031-08751-6_28

Distributed implementation The iterated sparse matrix-vector multiplica-
tion (SpMV) is the most computationally expensive part of the algorithm, there-
fore an efficient distributed implementation is required to scale on many compute
nodes of modern HPC systems.

We implement the application in C++ with MPI and OpenMP. Each MPI
process computes the operation on a part of the matrix, then the results are
aggregated and shared between processes at the end of each iteration. OpenMP
is used on each process to parallelize the computations for increased efficiency.

3.2 Sparse matrices

Since each MPI process performs the computations only on a part of the matrix,
we need to split the data matrix so that each process has access to the part it
uses. More precisely, the matrix is generated directly in a distributed manner,
with each process creating and storing its own block of the matrix based on its
process rank.

The block distribution consists of both a distribution by rows and a distri-
bution by columns. The Nc¢ x Nr matrix is split in Ngc x Ngr sub-matrices.
The sub-matrices are stored in a sparse storage format locally. In this case, the
input vector is split across the columns of the matrix and the sub-vectors are
duplicated on the sub-rows of the same column. The resulting vector has the
same size as the number of rows in the sub-matrices of the corresponding row.
However, each computing resource contains a part of a sub-vector. To obtain
the global result, all the distributed results of the same row have to be summed
then each row has to be gathered if the full result vector is needed in one place.

We use three standard storage formats for sparse matrices: CSR, ELLPACK,
and SCOO [9]. The computation of the SpMV for these three formats is detailed
in the Algorithms 1, 2 and 3 below. CSR and ELLPACK are standard formats
used in many applications and frameworks. SCOO is a variant of COO where
the matrix is split into blocks, then each block is stored in a COO format. It
allows for better locality than COO in distributed settings, and therefore better
performance on operations.

4 Experiments

In this Section, we first detail the parameters of the experiments performed to
study the scalability of the distributed PageRank algorithm on the supercom-
puter Fugaku. We present the computing environment and some specificities of
the processors. Then, we describe the matrices used for the experiments and
present the results.

4.1 Parameters

SVE implementation A major feature of the recent ARM-based processors,
including the A64FX, is the Scalable Vector Extension (SVE) that enables sup-
port for SIMD operations with per-lane prediction, which allows for efficient

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-08751-6_28 |



https://dx.doi.org/10.1007/978-3-031-08751-6_28

Algorithm 1: CSR format data structure and matrix vector product. idx
is the vector of indexes for the start of each row (of size n + 1). col and wval
are the vectors of columns and values (of size nnz each). fr (fc) is the index
of the first row (column) of the block of data stored on this process, in the
context of the whole data matrix

Function spmuv_csr()
Data: m : MatrixCSR, v : Vector
Result: r : Vector
for i < 0 to m.idx.size() — 1 do
for j < m.idz[i] to m.idz[i + 1] — 1 do
L rfi] += m.val[j] * v[m.col[j] - m.fc]

Algorithm 2: ELL format data structure and matrix vector product. col
and wval are the vectors of columns and values (of size n x max_col each)

Function spmuv_ell()
Data: m : MatrixELL, v : Vector
Result: r : Vector
for i <~ 0 to m.lrs — 1 do
for j < 0 to m.max_col — 1 do
rfi + m.rpos] += m.valli * m.max_col + j| * v[m.col[i * m.max_col
L + j]- m.fc]

Algorithm 3: SCOO format data structure and matrix vector product. row,
col and wal are the vectors of rows, columns and values (of size nnz each)

Function spmuv_scoo()
Data: m : MatrixSCOO, v : Vector

Result: r : Vector
for i < 0 to m.val.size() — 1 do
L r[m.row[i] - m.fr] += m.val[i] * v[m.col[i] - m.fc]

vectorization [19]. The vector length can be specified as a multiple of 128 bits.
We use a vector of 512 bits, which is the default for the processor and allows for
the simultaneous computation of 8 double-precision values (64 bits each). The
SVE instructions can be generated automatically by the compiler for simple
functions. However, the compilers supporting the SVE instructions sometimes
fail to vectorize the loops in the SpMV since they require indirect access to
store arrays. Instead, we used the ARM SVE intrinsic functions to implement a
vectorized version of the SpMV on different matrix formats.

4 Code is available at https://github.com/jgurhem/TBSLA /tree/dev_array

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-08751-6_28 |



https://dx.doi.org/10.1007/978-3-031-08751-6_28

Computing environment The code is implemented in C++ with MPI and
OpenMP. The program is compiled using the Fujitsu compiler in Clang mode,
with flags ‘-Kopenmp -fPIC -Ofast -mcpu=native -funroll-loops -fno-builtin -
march=armv8.2-a+sve’.

Input matrices The PageRank takes as input a stochastic matrix, representing
the normalized transpose of the adjacency matrix of a graph, and outputs a
single result vector. As described in Section 3, each (MPI) process generates a
subpart of the matrix, i.e. a block of rows and columns. This block of data is
only accessed by the related process, which handles the computation on this
part of the matrix. The matrix is therefore never stored in full in a single data
structure.

We choose to build the adjacency matrix of graphs where each node has
nnz edges linking to other nodes, with these nodes being chosen randomly with
uniform distribution (forbidding duplicate edges to ensure a constant number of
edges per node). This way, we have a matrix where data access is very irregular,
which is often the case in graph-based applications [14]. One could argue that
graphs also usually have nodes with different degrees, and regions more or less
densely connected. We choose to ignore this parameter here and assign a fixed
number of edges originating from each node. This is done in order to simplify
the observations and not introduce uncertainty due to the load balancing issues.

4.2 Results

Weak scaling on the matrix density Since we want to evaluate how the
PageRank algorithm scales on Fugaku, it makes sense to perform weak scaling
experiments, where we increase the size of the problem along with the amount
of computing resources. This also allows us to work on very large matrices,
which would not be possible with strong scaling experiments since the instances
would have to fit on one single processor in this case. There are two possibilities
to increase the problem size: either a) increase the size n of the matrix, or b)
increase the density of the matrix by increasing the number of nonzero elements
per row. These two can be combined, but since the goal of these weak scaling
experiments is to keep the same load per computing resource, it is simpler to
do so by only changing either the size n or the density nnz. In this study, we
choose the second option and increase the density of the matrix along with the
number of compute nodes, while keeping the same matrix size. The first option
(increasing the matrix size) implies further limitations that will be discussed at
the end of this Section.

As a baseline, we consider a (square) matrix of size 4,000,000 x 4,000,000
with either 50 or 100 nonzero elements per row. Therefore, when using 16 com-
pute nodes, the size of the matrix remains 4, 000, 000 x4, 000, 000, but the number
of nonzero elements per row goes up to 800 and 1600 respectively. As explained
in a previous section, the sparse matrix is split in blocks and distributed on the
compute nodes. Thus, using additional compute nodes for a matrix of the same

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-08751-6_28 |



https://dx.doi.org/10.1007/978-3-031-08751-6_28

size means splitting the matrix in increasingly small blocks. However, since the
number of nonzero elements per row increases accordingly, the load per process
remains constant. Since the complexity of the PageRank algorithm (using the
power iteration method) depends primarily on this number of nonzeroes, this
allows us to correctly assess the scalability using this experimental process.

This size was chosen to fit within the memory limits of one processor for all
three sparse matrix storage formats. We use two different base densities (50 and
100) to get more insight on how this parameter affects the performance of the
application. We increase the number of compute nodes progressively from 1 to
1024, doubling each time. Thus, in the largest case with 1024 compute nodes,
the matrix contains 4M rows with 102400 nonzero elements each, i.e. more than
400B nonzeroes in total. For a given number of processes p, we choose to arrange
them on a grid of p/2 (horizontally) by 2 (vertically). For example, with 16
processes, the matrix is split into 8 chunks horizontally and 2 chunks vertically,
resulting in a sub-matrix of size 500, 000 by 2,000, 000 on each process. Different
grid configurations have different impacts on the runtime, but the study of this
behavior is outside the range of our present work.

In addition, we experiment on two different MPI/OpenMP configurations:

— 1 MPI process per compute node: each process uses 48 threads, one per pro-
cessor core. The communications inside the processor are therefore handled
by OpenMP, and the communications between nodes by MPI.

— 1 MPI per CMG: each process uses 12 threads, and there are 4 MPI processes
per processor. With this setup, the communications between the 4 CMGs
inside one processor are also handled by MPI.

The results in Tables 1 and 2 show that in absolute terms, the PageRank
only takes a few seconds even for large instances.

nodes CSR ELL SCOO nodes CSR ELL SCOO
node CMG node CMG node CMG node CMG node CMG node CMG
1 1.89 0.91 1.30 0.91 5.19 2.17 1 590 1.28 2.59 1.30 5.59 3.53
2 217 0.76 1.41 0.79 4.24 2.01 2 392 1.15 246 1.19 4.55 3.24
4 1.98 0.69 1.33 0.71 3.28 1.84 4 3.14 0.90 1.89 0.92 4.37 2.59
8 1.58 0.54 1.02 0.55 2.57 1.47 8 275 0.78 1.70 0.79 3.77 2.27
16 1.39 0.47 0.98 0.48 2.24 1.28 16 2.78 0.77 1.69 0.81 3.83 2.27
32 1.39 0.46 0.88 0.54 2.25 1.33 32 2.77 0.77 1.83 0.81 3.81 2.31
64 1.40 0.46 0.93 0.47 2.24 1.32 64 2.38 0.67 2.20 0.70 3.26 1.99
128 1.20 0.43 1.22 0.40 1.89 1.10 128 1.98 0.56 2.00 0.58 2.68 1.63
256 1.00 0.36 1.02 0.35 1.56 0.95 256 1.99 0.56 2.00 0.56 2.68 1.64
512 1.00 0.35 1.00 0.35 1.13 0.84 512 1.96 0.56 1.96 0.57 2.26 1.55
1024 1.00 0.37 1.01 0.37 1.16 0.86 1024 1.98 0.59 1.97 0.59 2.28 1.58
Table 1: Median runtime for the Table 2: Median runtime for the
PageRank, scaling the nnz per row, PageRank, scaling the nnz per row,
from a base of nnz = 50 from a base of nnz = 100

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-08751-6_28 |



https://dx.doi.org/10.1007/978-3-031-08751-6_28

However, since the convergence of the power iteration method depends on the
input matrix, the number of iterations varies from one configuration to another.
Therefore, the runtime itself may not be best for assessing the scalability of the
application. For more rigorous comparison, we report the median performance
in GFlop/s corresponding to the weak scaling results of the above two tables.
Figures 1 and 2 show the results with nnz = 50 elements per row as basis for
matrix density (scaling with the number of compute nodes), using one MPI
process per compute node and one MPI process per CMG, respectively.

Fugaku - PageRank - nnz=50 - MPI=node - scaling=nnz

10,000 —-= CSR

5,000
—- ELL

1,000 SCO0

500

100
50

GFlop/s

1 6] 10 50 100 500 1,000

#nodes

Fig.1: Median performance for the PageRank, scaling the number of nonzero
elements, from a base of nnz = 50, with 1 MPI per node

Fugaku - PageRank - nnz=50 - MPI=socket - scaling=nnz

10,000 —-= CSR

5,000 e

SCO0
1,000

500

100
a0

GFlop/s

e
=]
2]
=
o
=]

500 1,000

#nodes

Fig.2: Median performance for the PageRank, scaling the number of nonzero
elements, from a base of nnz = 50, with 1 MPI per CMG

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOIJ10.1007/978-3-031-08751-6_28 |



https://dx.doi.org/10.1007/978-3-031-08751-6_28

Figures 3 and 4 show the results with nnz = 100 elements per row as basis for
matrix density, using one MPI process per compute node and one MPI process
per CMG, respectively.

Fugaku - PageRank - nnz=100 - MPI=node - scaling=nnz

10,000 —-= CS8R
5,000 L ELL
1000 SCO0

500

100
a0

GFlop/s

1 5 10 50 100 500 1,000

#nodes

Fig.3: Median performance for the PageRank, scaling the number of nonzero
elements, from a base of nnz = 100, with 1 MPI per node

Fugaku - PageRank - nnz=100 - MPl=socket - scaling=nnz

10,000 —- CSR

5,000 —L e

5C0o0
1,000
500

100
a0

GFlop/s

@

10 50 100 500 1,000

#nodes

Fig.4: Median performance for the PageRank, scaling the number of nonzero
elements, from a base of nnz = 100, with 1 MPI per CMG

Memory usage Compared to other supercomputers, Fugaku uses processors
with limited memory. Whereas an A64FX processor has 32GB of HBM2 memory,
only 28GB of allocable RAM can be used, which poses constraints on the size
of the data contained in each one. In Figure 5, we show the memory used per

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-08751-6_28 |



https://dx.doi.org/10.1007/978-3-031-08751-6_28

node as the number of nodes increases (using the larger case with base density
nnz = 100). The patterns are similar with the other MPI configuration (1 MPI
process per CMG).

Memory usage - scaling=nnz - MPI=node - nnz=100

30,000 —- CSR
== ELL
SCO0
20,000
= /\
=X
v
o
=
10,000
0
1 3 10 50 100 500 1,000

#nodes

Fig.5: Memory usage for the PageRank, scaling the number of nonzero elements,
from a base of nnz = 100, with 1 MPI process per node

4.3 Discussion

Weak scaling results The distributed PageRank shows excellent scalability
from 1 to 1024 compute nodes, reaching more than 5TFlop/s on the largest
experiments. The runtime per iteration of the power method remains about
constant, giving linear speedup on the performance with the number of nodes
used, with no signs of faltering. The performance patterns are similar for the
two base matrix densities (nnz = 50 and nnz = 100), although the numbers
are higher for the larger case. There are noticeable difference in performance
depending on the sparse matrix storage format used, with SCOO performing
overall worse than both CSR and ELL. Still, we can observe good scalability
with all of these formats.

Another interesting point is the difference between the two MPI configura-
tions; that is, either using 1 MPI process per node, or 1 MPI process per CMG.
This parameter has an impact on two aspects. First, using one MPI process
per CMG significantly increases performance, as can be observed by compar-
ing Figure 2 to Figure 1, and Figure 4 to Figure 3. The performance overall is
about doubled when using this configuration of 1 MPI per CMG. This indicates

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-08751-6_28 |



https://dx.doi.org/10.1007/978-3-031-08751-6_28

that using MPI for communications between the CMGs of a same processor is
more efficient than using a pattern of shared memory across the 4 CMGs and
using OpenMP for intra-processor communications. Second, the MPI configura-
tion changes the relative behaviors of the different storage formats. When using
1 MPI per node (Figures 1 and 3), the differences between the storage formats
tend to diminish as the number of compute nodes increases. On the contrary,
with 1 MPI per CMG (Figures 2 and 4), there is a larger gap between SCOO
on one hand, and CSR and ELL on the other, with these last two being nearly
equal.

Memory usage and roadblocks Figure 5 show the memory usage per node
of our application, scaling with the number of nodes. We can see that this usage
remains nearly constant, and below the limit of 28GB of allocable RAM per
node.

An analysis of the space complexity of our implementation of the PageRank
algorithm show that it uses two vectors of n_col elements to store the iterated
result of the computation, and two vectors of In_row elements (all in double-
precision), in addition to the matrix storage itself. n_col is the number of columns
of the full data matrix, and In_row is the number of rows in the local matrix
block for this process.

In the case of the experiments presented here, where we increase the density
of the matrix, the full matrix size remains constant, and the local size may even
decrease depending on how the matrix is split between processes. Therefore,
the constant memory usage for both the matrix storage and the computation,
observed in these two Figures, is normal.

However, these two vectors of size n_col are an issue when scaling on the
matrix size, as mentioned previously. At the start of each iteration, each process
needs to have the full result vector from the previous iteration in order to perform
the computation. At some point, the memory required to store this full result
vector on each process becomes larger even than the memory used to store
the sparse matrix block. This problem is magnified when using more than 1
MPI process per node, since each process has its copy of the result vector. In
our preliminary experiments, we hit the memory limit of 28GB with 256 nodes
when using 1 MPI per node, and with 64 nodes when using 1 MPI per CMG
(i.e. 4 MPI per node). This amounts to vectors of more than 1 billion double-
precision elements. Consequently, scaling for sparse matrices representing graphs
of billions of nodes would require a different implementation of the PageRank
algorithm, which does not require the full result vector to be stored on each
process.

5 Conclusion

We have presented an implementation of the PageRank algorithm that uses a
distributed and parallel sparse matrix vector product as its kernel, in order to
scale the exact computation of the PageRank to very large data sets. We have

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-08751-6_28 |



https://dx.doi.org/10.1007/978-3-031-08751-6_28

performed weak scaling experiments for this application on the supercomputer
Fugaku, increasing the density of a sparse stochastic matrix with the number of
compute nodes. The experiments used up to 1024 compute nodes (49152 compute
cores), for matrices with hundreds of billions of nonzero elements. The matrix
was generated in a distributed setting, with the nonzero elements chosen ran-
domly in order to avoid any structure, and to present the worst possible case for
data access patterns. We observed linear scalability for this PageRank algorithm
in this context. We compared two MPI configurations and found that using MPI
for communications between CMGs on the A64FX processor leads to noticeable
improvements in performance, compared to using one MPI per compute node.
Whereas the HPCG benchmark uses diagonal matrices, we studied irregular ma-
trices, which are more representative of real-life matrices such as Web graphs or
networks commonly used as input for the PageRank algorithm. On these very
large irregular matrices, the network-on-chip therefore induces a different pro-
gramming paradigm, with the communications between CMG being paramount
to the performance. The sparse matrix storage formats also exhibit different
performance patterns depending on the MPI configuration. Further analysis at
a lower level, and profiling of the MPI communications, would be required to
investigate these differences in more detail, as well as the discrepancies observed
between the different sparse matrix storage formats. Besides that, the main per-
spective would be to design a PageRank implementation that does not require to
store the full result vector on each process, which leads to memory issues when
scaling on very large matrices (beyond 1 billion in size). Such an implementation
would likely use additional MPI communications to gather the necessary input
at each iteration. Therefore, an analysis of the performance tradeoff in this case
would be insightful for future applications.

References

1. Ajima, Y., Kawashima, T., Okamoto, T., Shida, N., Hirai, K., Shimizu, T., Hi-
ramoto, S., Tkeda, Y., Yoshikawa, T., Uchida, K., Inoue, T.: The tofu interconnect
d. In: 2018 IEEE International Conference on Cluster Computing (CLUSTER).
pp. 646-654 (2018). https://doi.org/10.1109/CLUSTER.2018.00090

2. Alappat, C.L., Laukemann, J., Gruber, T., Hager, G., Wellein, G., Meyer,
N., Wettig, T.. Performance Modeling of Streaming Kernels and Sparse
Matrix-Vector Multiplication on A64FX. CoRR abs/2009.13903 (2020),
https://arxiv.org/abs/2009.13903

3. Dai, L., Freris, N.M.: Fully distributed pagerank computation with exponential
convergence. arXiv preprint arXiv:1705.09927 (2017)

4. De Jager, D.: Pagerank: Three distributed algorithms. Master’s thesis, Imperial
College London, London, pubs. doc. ic. ac. uk/pagerank-algorithms (2004)

5. Dongarra, J.: Report on the Fujitsu Fugaku system. University of Tennessee-
Knoxville Innovative Computing Laboratory, Tech. Rep. ICLUT-20-06 (2020)

6. Dongarra, J., Heroux, M.A., Luszczek, P.: High-performance conjugate-gradient
benchmark: A new metric for ranking high-performance computing systems. The
International Journal of High Performance Computing Applications 30(1), 3-10
(2016)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-08751-6_28 |



https://dx.doi.org/10.1007/978-3-031-08751-6_28

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Guo, T., Cao, X., Cong, G., Lu, J., Lin, X.: Distributed algorithms on exact per-
sonalized pagerank. In: Proceedings of the 2017 ACM International Conference on
Management of Data. pp. 479-494 (2017)

Gurhem, J., Vandromme, M., Tsuji, M., Petiton, S.G., Sato, M.: Sequences of
sparse matrix-vector multiplication on fugaku’s a64fx processors. In: 2021 IEEE
International Conference on Cluster Computing (CLUSTER). pp. 751-758. IEEE
(2021)

Hugues, M.R., Petiton, S.G.: Sparse matrix formats evaluation and optimization
on a gpu. In: 2010 IEEE 12th International Conference on High Performance Com-
puting and Communications (HPCC). pp. 122-129. IEEE (2010)

Ihde, N., Marten, P., Eleliemy, A., Poerwawinata, G., Silva, P., Tolovski, I., Ciorba,
F.M., Rabl, T.: A survey of big data, high performance computing, and machine
learning benchmarks

Ishii, H., Tempo, R., Bai, E.W.: A web aggregation approach for distributed ran-
domized pagerank algorithms. IEEE Transactions on automatic control 57(11),
2703-2717 (2012)

Klicpera, J., Bojchevski, A., Giinnemann, S.: Predict then propagate: Graph neural
networks meet personalized pagerank. arXiv preprint arXiv:1810.05997 (2018)
Lin, W.: Distributed algorithms for fully personalized pagerank on large graphs.
In: The World Wide Web Conference. pp. 1084-1094 (2019)

Lumsdaine, A., Gregor, D., Hendrickson, B., Berry, J.: Challenges in parallel graph
processing. Parallel Processing Letters 17(01), 5-20 (2007)

Ma, N., Guan, J., Zhao, Y.: Bringing pagerank to the citation analysis. Information
Processing & Management 44(2), 800-810 (2008)

Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Tech. rep., Stanford InfoLab (1999)

Pop, F., Dobre, C.: An efficient pagerank approach for urban traffic optimization.
Mathematical Problems in Engineering 2012 (2012)

Sarma, A.D., Molla, A.R., Pandurangan, G., Upfal, E.: Fast distributed pagerank
computation. In: International Conference on Distributed Computing and Net-
working. pp. 11-26. Springer (2013)

Sato, M., Ishikawa, Y., Tomita, H., Kodama, Y., Odajima, T., Tsuji, M., Yashiro,
H., Aoki, M., Shida, N., Miyoshi, I., Hirai, K., Furuya, A., Asato, A., Morita, K.,
Shimizu, T.: Co-design for A64FX Manycore Processor and ”Fugaku”. In: SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis. pp. 1-15 (2020). https://doi.org/10.1109/SC41405.2020.00051

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-08751-6_28 |



https://dx.doi.org/10.1007/978-3-031-08751-6_28

