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Abstract. Ductal carcinoma in-situ (DCIS) presents a risk of transformation to malignant intra-

ductal carcinoma (IDC) of the breast. Three tumor suppressor genes RB, BRCA1 and TP53 are 

critical in curtailing the progress of DCIS to IDC. The complex transition process from DCIS to 

IDC involves acquisition of intracellular genomic aberrations and consequent changes in pheno-

typic characteristics and protein expression level of the cells. The spatiotemporal dynamics as-

sociated with breech of epithelial basement membrane and subsequent invasion of stromal tissues 

during the transition is less understood. We explore the emergence of invasive behavior in benign 

tumors, emanating from altered expression levels of the three critical genes. A multiscale mech-

anistic model based on Glazier-Graner-Hogeweg method-based modelling (GGH) is used to un-

ravel the phenotypical and biophysical dynamics promoting the invasive nature of DCIS. Ductal 

morphologies including comedo, hyperplasia and DCIS, evolve spontaneously from the interplay 

between the gene activity parameters in the simulations. The spatiotemporal model elucidates the 

cause-and-effect relationship between cell-level biological signaling and tissue-level biophysical 

response in the ductal microenvironment. The model predicts that BRCA1 mutations will act as 

a facilitator for DCIS to IDC transitions while mutations in RB act as initiator of such transitions.  

Keywords: Glazier-Graner-Hogeweg model, BRCA1, ductal morphologies 

1 Introduction 

Mutations in the intraductal epithelial cells of the mammary gland result in unre-

strained proliferation of the cells resulting in ductal carcinoma in situ (DCIS) (1). This 

condition is classified as a non-invasive lesion. These epithelial cells are confined 

within the lumen and therefore are restrained from spreading outside the duct to the 

surrounding tissues. Further progression of DCIS and disruption of the basal membrane 
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results in malignant condition known as invasive ductal carcinoma (IDC) (2).  After the 

onset of IDC, the cancer cells invade other parts of the breast tissue and turn metastatic. 

Transformation from DCIS to life threatening IDC has long been a subject of clinical 

research (3-5). Studies have suggested that DCIS is a precursor for IDC and on average 

40% of patients with DCIS subsequently develop IDC (6). Luminal B1 tumors (7) have 

shown faster progression from DCIS to IDC than luminal A, triple negative and HER2 

type tumors.  HER2 positive tumors are found to transit from DCIS to IDC slower by 

staying in the DCIS state longer. Though, specific pathways and biomarkers for this 

transformation are yet to be discovered. Logullo et al. (8) analyzed epithelial to mesen-

chymal transition (EMT) markers for their association with DCIS to IDC transfor-

mation and found that c-met and TGFβ1 had positive association with the tumor trans-

formation. However, most EMT biomarkers did not yield significant prognosis value. 

One important characteristic associated with IDC is the presence of intra-tumor mor-

phological and genetic heterogeneity. “Evolutionary bottleneck” was suggested as an 

outcome of progression from DCIS to IDC by Cowell et al. (2), to explain the genetic 

heterogeneity observed in IDCs.  This transformation is a complex process involving 

multiple mutations resulting in a highly heterogenous tumor microenvironment. p53 

overexpression (9) has been observed in both DCIS and IDC, with the overexpression 

leading to lower mitotic index and apoptotic index in luminal cell phenotype and the 

opposite in stem cell phenotype. There is evidence (10, 11) suggesting that DCIS le-

sions and IDC tumors have deactivated the retinoblastoma gene, ie., loss of Rb function 

and that the Rb pathway is a likely regulator of the transformations. Rb has also been 

shown to be a deciding factor in the recurrence of DCIS (11) through overexpression 

of p16ink4a. Mutations in the BRCA genes (the tumor suppressor gene widely associ-

ated with breast cancer) and the gene encoding p53 (TP53) have been found to occur 

together in both DCIS and IDC tumors (12). Kumar et al. (13) studied the combined 

effect of the defects of these three major tumor suppressors genes, RB, BRCA1 and 

TP53. They observed that simultaneous deactivation of these pathways resulted in for-

mation of highly metastatic invasive breast cancer tumors in their mouse models and 

concluded that the pathways have a combinatorial effect on the progress and evolution 

of the tumor growth. The resulting tumors were found to have heterogenous morphol-

ogy suggesting a product of “Evolutionary bottleneck” similar to studies of Cowell et 

al. (2) Thus, alterations in these three pathways would result in formation of highly 

invasive tumors and could possibly act as precursors in DCIS to IDC transformations.  

Histological staining of tissue sections is traditionally used to study DCIS-IDC trans-

formation, yet it is rather difficult to understand the complexities associated with the 

disease and it is less feasible to design experiments to track the progress of tumor evo-

lution. Computational modelling of biological cells has become a useful tool in predict-

ing the outcome of tumor growth, angiogenesis, and tissue morphologies in-silico (14, 

15). Multiscale agent based models have been accepted widely due to their versatility 

in handling multiple cell phenotypes and therefore tissue heterogeneity (16, 17). Qiao 

et al. (18) developed an agent based model to simulate the proliferation of multiple 

myeloma tumor cells and analyzed the effect of drugs on the population of osteoclasts 

and osteoblasts. They modelled cells as agents and drugs as apoptosis inducers. The 

cells were modelled to undergo apoptosis at variable rates based on the quantity of 
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drugs they are in contact with. The effect of tyrosine inhibitor kinases (TKIs) on brain 

cancer was studied using a similar multiscale model by Sun et al. (19) They incorpo-

rated EGFR signaling in their model using partial differential equations to simulate 

various phenotypes observed in the tumor. The developmental stages of DCIS also have 

been simulated using agent-based modeling. The model developed by Macklin et al. 

(20) was able to provide insight into the formation of necrotic core and calcification 

regions. Though these models can quantify the tumor proliferation and apoptosis, they 

lack proper energy based realistic cell allocations from mitosis or cell motility. These 

mesoscale interactions determine the spatial distribution and localized effects associ-

ated with the position of tumor cells. A better way of modelling the cells in an energy 

optimistic way with cell motility while retaining the individual characteristics of cells 

is through Glazier-Graner-Hogeweg method-based modelling (GGH). Boghaert et al. 

(21) used GGH to simulate the progression of DCIS growth. Due to the inherent energy 

minimization principle of GGH, they were able to simulate four different forms of 

DCIS morphologies, namely micropapillary, cribriform, solid and comedo. These mor-

phologies would not have evolved in other agent-based models due to the absence of 

localized energy interactions. However, the model was unable to predict beyond the 

transition from DCIS to IDC and explain the reasons for the observed phenotypic het-

erogeneity in the clinical IDC sections.  

In this study, we use GGH to develop a model to elucidate on the transition from 

DCIS and IDC stage. We consider the critical three tumor suppressor pathways involv-

ing p53, Rb and BRCA to simulate the phenotypic variations associated with the un-

derlying genotypic changes. We make valid assumptions based on available literature 

data to interpret the effects of genotypic changes into physical model parameters. By 

combining phenotypic changes, genotypic influences on cell proliferation and energy 

minimization principles we model the intraductal luminal epithelial cells and myoepi-

thelial cells to elaborate the mechanism of DCIS to IDC transformation and the associ-

ated morphological heterogeneity. 

 

2 Methods and Materials 

2.1 Model description 

Two basic cell types, epithelial cells and myoepithelial cells were modeled. The for-

mer cell type forms the inner layer and the latter stays along the periphery as shown in 

figure 1. Individual cells were modelled as collection of lattice points on the simulation 

grid. The Glazier-Graner-Hogeweg (GGH) method-based model was implemented us-

ing an open-source software framework called CompuCell3D v3.7.5. The developed 

method is an extension of the model developed by Boghaert et al. (21) to simulate 

DCIS. The cells in the simulation are free to deform based on the energy constraints 

listed in equation 1 at each monte-carlo step (mcs). The cells deform at lattice point 

level through lattice point-copy attempts (22). The probability of success for a lattice 

point copy attempt is defined by equation one, where, 𝜎(𝑖) denotes the lattice point 
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occupied by a cell 𝜎,  𝑖′⃗⃗⃗  represents the new lattice point where the lattice point copy 

attempt is supposed occur, 𝛥𝐻 is the change in energy of the system and 𝑇𝑚 is the 

temperature or fluctuation amplitude of the system. The lattice point-level defor-

mations, on a longer time scale, constitute the motility of the cells. Volume constraints 

were imposed on the cells to ensure that the cells stay within permissible levels of vol-

ume increase or decrease using equation 2. The term 𝐸𝑣 denotes the volume energy of 

the cell, Vcell denotes the total number of lattice points occupied by the cell,  VT denotes 

the target volume of the cell and 𝜆𝑣 denotes the volume potential (similar to a spring 

constant). A surface area constraint was introduced in the model to prevent the cells 

from evolving into biologically unreasonable shapes. The terms 𝐸𝑠 ,  Scell,  ST and 𝜆𝑠de-

note the surface energy, total number of lattice points on the surface (perimeter in 2D), 

target surface area and the surface potential respectively. In addition, to restrict the cells 

from disintegrating and assuming fractured morphologies, a penalty function 𝐸𝑝 was 

imposed (23). This parameter retains individual cells as a single entity. The focal point 

plasticity (FPP) of the cell and contact energies between the cells are dictated by the 

equations 4 and 5. Here, lij is the distance between cells at positions 𝑖 and 𝑗,  Lij is the 

target distance between the cells, and λij is the FPP potential.  We used the physically 

equivalent values as suggested by Boghaert et al. (21), to simulate the cells’ attraction-

repulsion potential and adhesion forces. The energy arising from a lattice point copy 

attempt ‘𝐻’ is therefore given by equation 6. We assume the cells to be spherical with 

a diameter of 15 μm. 

 

𝑃 (𝜎(𝑖) → 𝜎(𝑖′⃗⃗⃗ )) = {
[ 𝑒𝑥𝑝 (−

𝛥𝐻

𝑇𝑚

)] , 𝛥𝐻 > 0  
     

1, 𝛥𝐻 ≤ 0                 

(1) 

𝐸𝑣 = ∑ 𝜆𝑣(𝑉𝑐𝑒𝑙𝑙(𝜎) − 𝑉𝑇(𝜎))
2

𝜎

(2) 

𝐸𝑠 = ∑ 𝜆𝑠(𝑆𝑐𝑒𝑙𝑙(𝜎) − 𝑆𝑇(𝜎))
2

𝜎

(3) 

𝐸𝑐 =  ∑ 𝐽(𝜏𝜎(𝑖), 𝜏𝜎(𝑗)

𝑖,𝑗

) (1 − 𝛿𝜎(𝑖),𝜎(𝑗)) (4) 

𝐸𝑓 =  ∑ 𝜆𝑖,𝑗  (𝑙𝑖,𝑗 − 𝐿𝑖,𝑗)
2

𝑖,𝑗

(5) 

𝐻 = 𝐸𝑣 + 𝐸𝑠 + 𝐸𝑐 + 𝐸𝑓 (6) 

Each cell has three major biological parameters associated with it, the DNA 

damage level, oxidative stress, and proliferation potential. All these biological param-

eters were modelled as non-dimensional continuous variables from 0 to 1.0. Equation 

6 describes the change in DNA damage level within the cells. Cells accumulate DNA 

damage ‘d’ in a stochastic manner with a probability 𝑓𝑑𝑑 (24) as shown in equation 7. 
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𝐶𝐵 indicates the expression level of BRCA. The proliferation potential ‘p’ was assumed 

to decrease with increase in number of epithelial neighbors, since a crowded microen-

vironment would result in less nutrient available for cell growth. To calculate the num-

ber of neighbors, we used a neighbor order of 1.5 times the cell radius for epithelial 

(Ne) and myoepithelial cell neighbors (Nm). Also, the proliferation potential was mod-

elled to increase with DNA damage accumulated in the cancer cells. The increased 

proliferation potential of a DNA damaged cell can be considered as an inherent property 

of a mutated cell with higher survivability capacity (25). Proliferation potential was 

calculated using equation 8. Where, 𝛽, 𝑘𝑜𝑠, 𝐶𝑅𝑏 𝑎𝑛𝑑 𝑂 represent specific growth rate, 

oxidative stress coefficient and oxidative stress respectively. The oxidative stress 

within the cells was assumed to increase from crowding of cell neighbors (decrease in 

nutrient availability) and the cell type of these neighbors (26). Epithelial contribution 

to oxidative stress was considered to be negligible for a cell with fewer than 5 neigh-

bors. The oxidative stress contribution from myoepithelial neighbors was also consid-

ered to reduce with increase in number of neighbors as dictated by equation 9. This 

assumption is based on the ready availability nutrient for epithelial cells that are located 

near myoepithelial cells,  as observed by Norton et al. (27). In equation 9, the constants 

𝜔1 and 𝜔2 are the weighting fractions for oxidative stress contribution from the two 

types of neighbor cells, 𝑊 is the maximum contribution to oxidative stress from the 

neighbors and ‘𝑎’ stress generation rate coefficient.  

The gene activity and protein expression levels control the cell cycle by indirectly 

controlling the three major cell survivability parameters. RB functions as a tumor sup-

pressor gene by being a negative regulator of cell proliferation. Cells which have suf-

fered DNA damage or accumulated oxidative stress are arrested in their G1 phase by 

the activity of RB (28). In our model, this gene activity is modelled by considering Rb 

(Rb protein or pRb) as a regulator of cell proliferation potential. Thus, in the simulation, 

Rb reduces and eventually prevents the proliferation of cells that have accumulated 

DNA damage and oxidative stress as defined in equation 8. The extent of Rb effect is 

dependent on its activity potential in the cell ‘𝐶𝑅𝑏’.  

In normal cells, the DNA damage must be limited to avoid run-off cell proliferations. 

Proliferation reduction in DNA damaged cells is handled by BRCA which is involved 

in DNA repair (29). In cases of breast cancer, the inactivation of BRCA genes have 

been the major reason for DNA damage and accumulation of multiple mutations. We 

therefore modelled BRCA activity ‘CB’ as a modifier of the DNA damage levels in the 

cells as shown in equation 7. 

If the DNA damage or oxidative stress in cells exceed a critical level, then apoptosis 

is initiated based on the lethal cell DNA damage level (𝑑𝑙) and probability dictated by 

the effectivity of p53 (𝐶𝑝53) (30) respectively. Cells with apoptosis index ‘𝐼𝐴’ values 

larger than maximum cell apoptotic index value ‘𝐼𝐴𝑐’ are marked for removal from the 

simulation domain. These cells are removed if they continue to express 𝐼𝐴 values greater 

than 𝐼𝐴𝑐 for more than ‘𝑁𝐴’ simulation time steps. Similarly, in case of mitosis, cells 

divide in simulation if the mitosis index ‘𝐼𝑀’ (equation 11) is higher than the maximum 

cell mitotic index value ‘𝐼𝑀𝑐’ 

𝑑 =  𝑓𝑑𝑑[ 1 − 𝐶𝐵] (7) 
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𝑑𝑝

𝑑𝑡
= 𝛽(1 − 𝑘𝑜𝑠 𝐶𝑅𝑏  𝑂 + 𝐶𝑅𝑏 𝑑), with max(𝑝) = 1.0 (8) 

𝑑𝑂

𝑑𝑡
=  {

𝑊[𝜔1𝑒−𝑎𝑁𝑚 + 𝜔2(1 − 𝑒−𝑎(𝑁𝑒−𝑁𝑚𝑎𝑥))] , 𝑖𝑓 𝑁𝑒 ≥ 𝑁𝑚𝑎𝑥

𝑊[𝜔1𝑒−𝑎𝑁𝑚] , 𝑒𝑙𝑠𝑒 
, 𝑤𝑖𝑡ℎ max(𝑂) = 1.0 (9) 

𝐼𝐴 = 𝑂 ∗ 𝐶𝑝53 (10) 

𝐼𝑀 = 𝑝 ∗ 𝐶𝑝53 (11) 

The cells were allowed to evolve based on the constraints dictated by equation 6 

throughout the simulation. The calculations based on activity level equations 7 to 11 

were computed for every 100 mcs. This cycle ensures that the cells relax for sufficient 

time after their growth, thereby, assuring minimal energy state of the system. Each 100 

mcs corresponds to 0.25 hours real time. The simulations were carried out for a maxi-

mum of 100000 mcs (250 hours) or until the maximum cell count in the simulations 

reached 1000, whichever event occurred earlier. Parametric values used in the simula-

tions are summarized in table 1. 

3 Results and Discussions 

The model simulations with maximum levels (1.0) of 𝐶𝐵, 𝐶𝑝53and 𝐶𝑅𝑏 should result 

in a normal ductal structure. Maximum levels of activity should prevent apoptosis eva-

sion or proliferation runoff of the cells. These structures should possess a single layer 

of myoepithelial cells enclosing one or two layers of epithelial cell with minimal dis-

tortions to ductal morphology. Ensuring that the model establishes and maintains the 

above-mentioned structure throughout the simulation duration is the first step in veri-

fying if the model assumptions represent in-vivo dynamics. As hypothesized, the sim-

ulations carried out with maximum expression levels are found to produce benign nor-

mal ductal structures as shown in figure 1a. The structure is found to be in a dynamic 

equilibrium. Meaning, the aging cells are removed with simulation progress and are 

replaced by new daughter cells. This cycle repeats itself throughout the entire simula-

tion duration. The variation in formation of new cells and live epithelial cell count dur-

ing the course of simulation for this case are shown in figure 1b and 1c respectively. 

The intertwined effects of apoptosis and mitosis can be seen to regulate the ductal level 

cell population homeostasis. Thus, the simulations capture the in-vivo co-operative ef-

fect of BRCA, RB and P53 on the regulation of ductal development and functioning. A 

cell-field plot of oxidative stress levels is presented in figure 1d. Oxidative stress levels 

are found to vary throughout the entire structure suggesting the absence of localized 

overcrowding in these structures. The plots also capture the elimination of any cells 

that have accumulated critical oxidative stress. The major fixed parameters used in the 

study, 𝑊 and 𝛽 play a crucial role in establishing this mitosis and apoptosis balance. 

The value of 𝑊was chosen in such a way that in the absence of DNA damage and 

oxidative stress, on average the cells divide around every 17 hours. This proliferation 

duration is similar to those reported in experimental studies (31, 32).  𝛽-value is an 
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analog of 𝑊-value for oxidative stress, both these values were quantitatively set to be 

equal. Hence, the dynamic equilibrium established between the proliferation-apoptosis 

cycle is driven by the perturbations arising from the oxidative contributions of the 

neighboring cells. Figure 1e shows the normalized duration since the last cell division, 

which closely follows the trend of oxidative stress levels with the cells.  

 

Fig. 1. Model simulation results for normal ductal structure formation at maximum (1.0) 𝐶𝐵, 

𝐶𝑝53and 𝐶𝑅𝑏 values. (a) Panel showing spatial changes in ductal structure (white color indicates 

epithelial cells and red color indicates myoepithelial cells) at 0, 50000 and 100000 mcs, (b) tem-

poral variations in number of new cell formations, (c) temporal variations in total epithelial cell 
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count, panel showing spatial variations of (d) oxidative stress and (e) normalized cell age at 0, 

50000 and 100000 mcs. 

On an average all the cells in the simulation were replaced every 8500 mcs (21.25 

hours). This novel dynamic replacement behavior is more realistic than previous DCIS 

models in literature (21, 27).   These models used a stochastic way of apoptosis, where 

in a cell in the simulation domain was picked randomly at fixed intervals and removed 

based on probability outcomes. These methods introduced a model artifact of ‘irre-

placeable cells’ which are never removed from the simulation domain.  Our approach 

eliminates these cells and closely mimics the in-vivo mechanism of replacement of 

damaged aging cells with new cells. The values of 𝐶𝐵, 𝐶𝑝53and 𝐶𝑅𝑏 were varied from 

0.25 to 1.0 in increments of 0.25 in a combined manner in the simulations. Figure 2a 

shows the number of cases with less than 125 surviving cells at the end of simulations.  

These cases, in general, produce a ductal configuration very similar to the normal state, 

that is, a single layer of myoepithelial cells binding fewer than three layers of epithelial 

cells.  The x-axis in figure 2a denotes the cases where the values of 𝐶𝐵, 𝐶𝑝53and 𝐶𝑅𝑏 

were kept maximum (1.0). As observed, simulations with maximum values of 𝐶𝑅𝑏 tend 

to produce most controlled growth of epithelial cells. Even though Rb was not modelled 

as a direct influencer of apoptosis, it is found to be a major driver of cell aging control.  

This simulation result also correlates with other experimental observations where lower 

Rb expression levels have been implicated with risk of ipsilateral breast event (IBE) 

(33) and DCIS to IDC transformations (10, 11). It should be noted that there are other 

cases where even with maximum expression of Rb, the cells proliferated in an uncon-

trolled manner. This means that 𝐶𝑅𝑏is not the sole controlled of apoptosis-mitosis equi-

librium.  
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Fig. 2. Variation of cell count for different parametric values. (a) Number of cases with cell count 

less than 125 and maximum parameter values (1.0) Total cell count at the end of simulations for 

different values of 𝐶𝑝53 and 𝐶𝐵 and fixed value 𝐶𝑅𝑏 of   (b) 0.25, (c) 0.5 and (d) 0.75. The circle 

size indicates the number of cells, with maximum cell count (1000) corresponding to the 

maximum circle diameter. 

To further unravel the intertwined effects of  𝐶𝐵 and 𝐶𝑝53, 2D density plots of cell 

counts for various fixed values of 𝐶𝑅𝑏are used as shown in figure 2b,2c and 2d. It can 

be observed that for fixed values of 𝐶𝑅𝑏= 0.5 and 0.75, reduced cell population levels 

are seen for 𝐶𝑝53value of 0.25, irrespective of the 𝐶𝐵 value. These values are lower than 

their counterparts with 𝐶𝑝53 values 0.5 and 0.75. This outcome is unexpected since a 

reduced 𝐶𝑝53 value would mean more chances of cell survival as dictated by equation 

10.   Although counterintuitive, this observation can be attributed to the decreased lev-

els of both apoptotic and mitotic indices of these cells (𝐼𝐴 and 𝐼𝑀) at minimum 

𝐶𝑝53value. This results in a pathway-race between proliferation and apoptosis. Hence, 

for fixed values of 𝐶𝑅𝑏 at 0.5 and 0.75, effect of apoptosis is more pronounced in sim-

ulations with 𝐶𝑅𝑏 value of 0.25 than simulations with 𝐶𝑅𝑏 values greater than 0.25. The 

above observations do not hold true for simulations with fixed 𝐶𝑅𝑏 and 𝐶𝑝53 values of 

1.0 and 0.5 respectively. In these cases, the total live cell population is found to be 

lower than simulations with fixed 𝐶𝑅𝑏 of 1.0 and 𝐶𝑝53 values of other than 0.5. Inter-

estingly, simulations with 𝐶𝑝53 value of 0.5 are the only simulations with more than 

150 cells at maximum 𝐶𝑅𝑏 expression levels. Thus, the system produces non-linear re-

sponse to 𝐶𝑝53 effectivity levels and the outcomes are dependent on the interplay of all 

three parameters (𝐶𝑝53, 𝐶𝑅𝑏 𝑎𝑛𝑑 𝐴𝐵). 

Heightened levels of cell proliferation and survival alone cannot be considered as 

indicators of invasive transformations. Elevated proliferation and cell survival are char-

acteristics of both DCIS and IDC tumors. To be characterized invasive, the epithelial 

cell populations should proliferate enough to fill the space between the ducts and pen-

etrate the myoepithelial layer to invade surrounding tissues. The simulation results were 

examined for morphological differences arising from variations in the activity parame-

ters. Four unique ductal structures were obtained from the parametric simulation stud-

ies.  The structures are shown in figure 3a-3d. They can be classified as (1) normal 

ductal configuration, (2) ductal hyperplasia, (3) solid or comedo and (4) invasive ductal 

configuration. The spatial development of these configurations is shown in figure 3a-

3d respectively. In ductal hyperplasia structures (fig. 3b), layers of epithelial cells are 

found to extend from the myoepithelial wall towards the ductal core. Such structures 

are generally categorized as benign in-vivo. However, they are considered as risk fac-

tors for breast cancer development. Further uncontrolled proliferation of cells in hyper-

plasia structures will result in formation of solid or comedo structures such as the one 

shown in figure 3c. These structures are categorized as high-grade DCIS. If left un-

treated these structures can progress to invasive ductal carcinoma. Figure 3d shows the 

invasive ductal carcinoma formed in simulation. The major difference between solid 

and invasive structures is the presence of cells that have penetrated the myoepithelial 

layer. Invasive ductal carcinoma (IDC) structures are malignant in nature, after pene-

tration, the IDC cells invade the local tissue and establish a population there. In most 
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simulation cases, the penetration of cells is aided by the intraductal pressure or energy 

build up. This energy build-up makes the myoepithelial chain unstable resulting in local 

adhesion failures and epithelial cell break away. 

 

Fig. 1. Ductal structures formed during the simulations. (a) Formation of normal duct structure 

with parameter values of 𝐶𝐵 = 1, 𝐶𝑝53 = 1 and 𝐶𝑅𝑏 = 1, (b) formation of  ductal hyperplasia 

structure with parameter values of 𝐶𝐵 = 1, 𝐶𝑝53 = 0.25 and 𝐶𝑅𝑏 = 0.75, (c) formation of solid 

structure with parameter values of  𝐶𝐵 = 1, 𝐶𝑝53 = 0.25 and 𝐶𝑅𝑏 = 0.5 and (d) formation of 

invasive ductal carcinoma structure with parameter values of  𝐶𝐵 = 0.25, 𝐶𝑝53 = 0.5 and 𝐶𝑅𝑏 =

0.75. The white spots indicate epithelial cells and red spots indicate myoepithelial cells. 

Multiple structures can form for a single value of 𝐶𝐵, 𝐶𝑝53and 𝐶𝑅𝑏 parameter in the 

parametric combinations. To better understand the contribution of each of these values 

towards formation of different ductal structures, figure 4 summarizes the number of 

instances of formation of various structures at different expression levels. Conclusively, 
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all variational combinations are found to predominantly produce IDC structure. This 

means DCIS to IDC transformations are possible from all variations in 𝐶𝑝53and 𝐶𝑅𝑏. 

From simulation data, for the case of variations in 𝐶𝐵values, IDC transformations are 

possible only if coupled with variation in expression levels of other parameters. This 

observation suggests a promotional role for BRCA in IDC transformations rather than 

as an initiator. 𝐶𝑅𝑏 is found to produce most of the normal ductal structures in the sim-

ulation at the maximum expression level. Therefore, Rb should act as a major restraint 

in DCIS to IDC transformations. In addition, minimum level 𝐶𝑅𝑏(0.25) is found to 

solely produce IDC structures.  This shows the crucial effect of 𝐶𝑅𝑏reduction on for-

mation of IDC structures. The non-linear nature of the responses evoked from 𝐶𝑝53var-

iations is further evident in figure 4c.  p53 effectivity level of 0.5 is found to produce 

solely of IDC structures.  The number of structures produced at this effectivity level is 

even higher than the number of structures produced at a lower effectivity level of 0.25. 

As previously discussed, this phenomenon can be attributed to the pathway-race con-

dition between apoptosis and cell proliferation. 

 

Fig. 2. Formation of various ductal structures for different values of 𝐶𝐵, 𝐶𝑝53and 𝐶𝑅𝑏. The color 

legend indicates various activity levels of the simulation parameters. 

Table 1. Key parametric values used in the simulations 

Parameter Notation Value (units) 

Time step mcs 2.5 x 10-3 (h) 

Volume potential 𝜆𝑣 5 - 10 

Surface potential 𝜆𝑠 2 

Temperature 𝑇𝑚 10 

DNA damage probability 𝑓𝑑𝑑  0.5 

Oxidative stress contribution from myoepithelial 

neighbors 

𝜔1 0.75 

Oxidative stress contribution from epithelial 

neighbors 

𝜔2 0.25 

Maximum neighbors 𝑁𝑚𝑎𝑥  5 

Oxidative stress coefficient 𝑘𝑜𝑠 0.67 
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Stress generation rate coefficient a 0.1 

   

 

4 Conclusions  

We developed a GGH method-based model for simulating the biological and bio-

physical interactions occurring between cells in the mammary ducts. The numerical 

model was used to explore the effects of mutation of three major tumor suppressor 

genes (RB, TP53 and BRCA1) on the ductal microenvironment. Through the model 

simulations, we captured the spatiotemporal changes occurring in the tumor microen-

vironment, which are instigated by the altered gene expression levels in the ductal cells. 

The developed model has captured the dynamics of development of various ductal 

structures. These structures include normal duct, ductal hyperplasia, comedo and inva-

sive ductal carcinoma structure. Cells in the simulations were replaced periodically by 

new cells similar to in-vivo tissue cell population homeostasis. DCIS to IDC transfor-

mation is found to be initiated through variations in expression levels and effectivity of 

Rb and p53 respectively. The model simulations suggest a promoter role for BRCA in 

progression from DCIS to IDC. In a word, our model simulates the transformation of 

DCIS to IDC of breast cancer, and demonstrates the influence of impaired activities of 

BRCA, RB and P53 on such transitions. 

Gene sequencing techniques and clinical sample processing methods have advanced 

dramatically in recent years. Technologies including microarray, next generation se-

quencing and ddPCR enable clinicians and scientists to detect mutations and expression 

levels of thousands of genes from liquid biopsy or tissues samples of patients. However, 

the lack of efficient analysis tools and modeling systems limits our understanding of 

the sequencing and detection data. Here we have developed a numerical model to sim-

ulate the combinational influence of BRCA, Rb and p53 activities on DCIS to IDC 

transformation. Our model could be used to analyze the mutation status and expression 

levels of BRCA, Rb and p53, to predict the disease progression and survival of patients. 

Drugs that directly target BRCA, Rb and p53 or inhibit the related pathways have been 

approved for breast cancer treatment, such as Palbociclib, Ribociclib and Olaparib. The 

simulation model can act as a tool for experimental hypotheses testing. Based on the 

mutations and expression data of the genes, further development would enable gene 

expression data-driven personalized selective inhibitor drug scheduling. 
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