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Abstract. Time series forecasting is a challenging problem particularly
when a time series expresses multiple seasonality, nonlinear trend and
varying variance. In this work, to forecast complex time series, we pro-
pose ensemble learning which is based on randomized neural networks,
and boosted in three ways. These comprise ensemble learning based on
residuals, corrected targets and opposed response. The latter two meth-
ods are employed to ensure similar forecasting tasks are solved by all
ensemble members, which justifies the use of exactly the same base mod-
els at all stages of ensembling. Unification of the tasks for all members
simplifies ensemble learning and leads to increased forecasting accuracy.
This was confirmed in an experimental study involving forecasting time
series with triple seasonality, in which we compare our three variants of
ensemble boosting. The strong points of the proposed ensembles based
on RandNNs are very rapid training and pattern-based time series rep-
resentation, which extracts relevant information from time series.

Keywords: Boosted ensemble learning · Ensemble forecasting · Multi-
ple seasonality · Randomized NNs · Short-term load forecasting.

1 Introduction

Ensemble methods are considered to be a cornerstone of modern machine learn-
ing [1]. They are commonly used for regression and classification problems.
Ensembling is also a very effective way of increasing the predictive power of
forecasting models. Combining many base models improves the final forecasting
accuracy as well as the stability of the response when compared to a single model
approach. Success in ensemble learning depends on the proper flexibility of the
ensemble members and the trade-off between their performance and diversity
[2]. It is also determined by the way learners are generated at the successive
stages of ensembling and the method employed to combine them.

The effectiveness of ensembling in forecasting is evidenced by the fact that
in the most renowned forecasting competition, M4 [3], of the 17 most accurate
models, 12 used ensembling in some form [4]. The winning submission, which
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is a hybrid model combining exponential smoothing and long short-term mem-
ory, used three types of ensembling simultaneously [5]: combining results of the
stochastic training process, bagging, and combining multiple runs.

To improve the performance of ensemble learning many approaches have been
proposed such as stacking [6], bagging [7], boosting [8], negative correlation learn-
ing [9], snapshot ensembles [10], and horizontal and vertical ensembles developed
for deep learning [11]. Boosting, which this work focuses on, is a general ensemble
technique that involves sequentially adding base models to the ensemble where
subsequent models correct the performance of prior models. This approach is
very effective as evidenced by the high ranking positions of boosted models such
as XGBoost [12], i.e. ensemble of decision trees with regularized gradient boost-
ing, in competitions such as those organized by Kaggle. Boosting also has many
applications in the forecasting field. Some examples are: [13], where an ensem-
ble of boosted trees is used for bankruptcy prediction; [14], where XGBoost is
combined with a Gaussian mixture model for monthly streamflow forecasting;
[15], where AdaBoost is applied as a component of a hybrid model for multi-step
wind speed forecasting; and [16], where a natural gradient boosting algorithm
is applied for solar power probabilistic forecasting. This last work highlights a
valuable advantage of ensembling. It can produce probabilistic forecasts, i.e. the
distribution of the forecasted variable in the future.

In this study, we propose a boosted version of our ensemble of randomized
neural networks (RandNNs) for complex time series forecasting [17]. In [17], we
focused on strategies for controlling the diversity of ensemble members. The
members were trained independently. Here, we construct an ensemble sequen-
tially. When a new member is added to the ensemble, it learns by taking into
account the results of the ensemble members so far. We consider three methods
of boosting. The contribution of this study is threefold:

1. We propose new methods of ensemble boosting: ensemble learning based on
corrected targets and ensemble learning based on opposed response. They
are both employed to ensure similar tasks for all ensemble members. This
unification of the tasks justifies the use of identical base models in terms of
architecture and hyperparameters at all stages of ensembling.

2. We develop three ensemble learning approaches for forecasting complex time
series with multiple seasonality. They are based on RandNNs, pattern-based
time series representation and three methods of boosting: based on residuals,
corrected targets and opposed response.

3. We empirically compare the performance of the proposed ensemble methods
on challenging short-term load forecasting problems with triple seasonal-
ity, and conclude that the opposed response-based approach outperforms its
competitors in terms of accuracy and sensitivity to hyperparameters.

The rest of the work is organized as follows. In Section II, we present a base
model, RandNN. Details of the proposed three methods of boosted ensemble
learning are described in Section III. The experimental framework used to eval-
uate and compare the proposed ensemble methods is described in Section IV.
Finally, Section V concludes the work.
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2 Base Forecasting Model - RandNN

As a base model, we use a single hidden layer feedforward NN with m logistic
sigmoid hidden nodes [18]. In randomized learning, the weights of hidden nodes
are selected randomly from a uniform distribution and symmetrical interval U =
[−u, u]. The biases of these nodes are calculated, according to recent research
[19], based on the weights as follows: bj = −aTj x∗j , where aj is the vector of
weights for the j-th hidden node, and x∗j is one of the training patterns selected at
random (see [19] and [20] for details, justification and other variants). This way of
generating hidden nodes places the sigmoids into the input feature space limited
to some hypercube, avoiding their saturated parts. Moreover, the sigmoids are
distributed according to the data distribution. These improve the aproximation
and generalization abilities of the model [19], [20].

The hidden node sigmoids are combined linearly by the output nodes: ϕk(x) =∑m
j=1 βj,khj(x), where hj(x) is the output of the j-th hidden node, and βj,k is

the weight between j-th hidden and k-th output nodes. The only learnable pa-
rameters are the output weights. They are calculated from β = H+Y, where H
is a matrix of the hidden layer outputs, H+ denotes its Moore–Penrose gener-
alized inversion, and Y is a matrix of target output patterns. H is a nonlinear
feature mapping from n-dimensional input space to m-dimensional projection
space (usually m � n). Note that this projection is random. Due to the fixed
parameters of the hidden nodes, the optimization problem in randomized learn-
ing (selection of weights β) becomes convex and can be easily solved by the
standard least-squares method.

The forecasting model based on RandNN, which we adapt from [18], has two
more components: encoder and decoder. Let us consider time series {Ek}Kk=1

with multiple seasonality. The encoder transforms this series into input and
output patterns expressing seasonal sequences of the shortest length. The input
patterns, xi = [xi,1, . . . , xi,n]T , represent sequences ei = [Ei,1, . . . , Ei,n]T , while
the output patterns, yi = [yi,1, . . . , yi,n]T , represent forecasted sequences ei+τ =
[Ei+τ,1, . . . , Ei+τ,n]T , where n is a period of the seasonal cycle (e.g. 24 hours for
daily seasonality), i = 1, ...,K/n is the sequence number, and τ ≥ 1 is a forecast
horizon. The patterns are defined as follows:

xi =
ei − ei
ẽi

, yi =
ei+τ − ei

ẽi
(1)

where ei is the mean value of sequence ei, and ẽi =
√∑n

t=1(Ei,t − ei)2 is a
measure of sequence ei dispersion.

Input patterns xi represent successive seasonal sequences which are centered
and normalized. They have a zero mean, and the same variance and unity length.
Thus they are unified and differ only in shape. In contrast, patterns yi are not
globally unified and can express additional seasonality, e.g. when time series
include both daily and weekly seasonalities, the former is expressed in the y-
pattern shape, while the latter is expressed in y-pattern level and dispersion
(compare x- and y-patterns in Fig. 2 and see discussion in [18]). In the case of
such seasonalities, we build forecasting models that learn from data representing
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the same days of the week, e.g. for test query pattern x representing Monday,
training set Φ consists of x-patterns representing all historical Mondays from the
data and y-pattern representing the Tuesdays following them (assuming τ = 1).

The decoder based on the y-pattern forecasted by the network, ŷ, and coding
variables describing the query sequence, ẽ and e, using transformed equation (1)
for y, calculates the forecasted seasonal sequence:

ê = ŷẽ+ e (2)

Remarks:

1. RandNN was designed for forecasting time series with multiple seasonalities.
In the case of one seasonality, y-patterns express only one seasonality, and
there is no need to decompose the forecasting problem. In the case of no
seasonality, the input pattern length should be selected experimentally, while
the y-pattern length is equal to the forecast horizon.

2. The bounds of the interval for random weights, u, correspond to the maxi-
mum sigmoid slope. To increase interpretability, let us express the bounds u
using the slope angles αmax [20]: u = 4 tanαmax, and treat αmax as a hyper-
parameter. The second hyperparameter is the number of hidden nodes, m.
Both hyperparameters decide about the bias-variance tradeoff of the model
and should be tuned to the complexity of the target function.

3. Advantages of RandNN are very fast training and the simplification of the
forecasting task due to pattern representation. In [18], it was shown that
RandNN can compete with fully-trained NN in terms of forecasting accuracy,
but is much faster to train.

3 Boosting of Ensemble Learning

3.1 Ensemble Learning Based on Residuals

An ensemble based on residuals, which is a simplified variant of a gradient boost-
ing algorithm [21], is constructed sequentially. In the first step, a base model
learns on the training set {(xi, yi)}Ni=1 (we consider a scalar input and output
for simplicity) and fits to original data. Let us denote this model f1(x) and the
ensemble model including one member F1(x) = f1(x). In the second step, the
second base model is added, f2(x), such that the sum of this model with the
previous one, F2(x) = F1(x) + f2(x), is the closest possible to the target y. In
the successive steps, further base models are added with the same expectation.
In the k-th step, the function fitted by the ensemble is Fk(x) = Fk−1(x)+fk(x).

Thus, the error in this step, MSEk = 1
N

∑N
i=1 (yi − Fk(xi))

2
, can be written as:

MSEk =
1

N

N∑
i=1

(fk(xi)− rk−1,i)2 (3)

where rk−1,i = yi − Fk−1(xi) is a residual between the target and the response
of the ensemble of k − 1 members.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_26

https://dx.doi.org/10.1007/978-3-031-08751-6_26


Boosted Ensemble Learning based on RandNNs for TS Forecasting 5

Equation (3) clearly shows that the base model added to the ensemble at
the k-th stage fits to the residuals between the target and the ensemble built at
stage k−1. So, it attempts to correct the errors of its predecessors. The training
set for the base model in the k-th stage is {(xi, rk−1,i)}Ni=1. The final ensemble

response is the sum of all member responses: FK(x) =
∑K
k=1 fk(x).

Algorithm 1 EnsR: Boosting based on residuals

Input: Base model f (RandNN), Training set Φ = {(xi,yi)}Ni=1, Ensemble size K
Output: RandNN ensemble FK
Procedure:
for k = 1 to K do

Learn fk based on Φ
Calculate ensemble response Fk(xi) =

∑k
l=1 fl(xi), i = 1, ..., N

Determine residuals rk,i = yi − Fk(xi), i = 1, ..., N
Modify training set Φ = {(xi, rk,i)}Ni=1

end for

Algorithm 1 and Fig. 1 demonstrate the process of building an ensemble based
on residuals (EnsR) for pattern-based forecasting. Learner 1 (RandNN) learns
the original target function on Φ. Each subsequent learner learns the residuals
between the target patterns y and the aggregated outputs of its predecessors
shown in the lower panel of Fig. 1. Note that in EnsR, each learner can have
a different problem to solve, expressing different features. Learner 1 learns the
specific patterns of seasonal cycles y, while the next learners learn completely
different tasks, i.e. the residuals, which do not have such distinct patterns as y
and have a large stochastic component. This inconsistency between the prob-
lems solved by the learners can affect negatively the final result, especially in
the common case of using identical base models (the same architecture and hy-
perparameters) at every stage of ensembling.

3.2 Ensemble Learning Based on Corrected Targets

To unify the problems solved by the learners at successive stages of ensembling,
we modify the EnsR framework as follows. During the sequential process, at
stage k, the base model fk(x) is added to the ensemble. Ensemble response at

this stage is the average of k learners: Fk(x) = 1
k

∑k
l=1 fl(x). The loss function

can be expressed as:

MSEk =
1

N

N∑
i=1

(
y −

(
1

k

k−1∑
l=1

fl(x) +
fk(x)

k

))2

=
1

Nk

N∑
i=1

(
fk(x)−

(
ky −

k−1∑
l=1

fl(x)

))2
(4)
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Fig. 1. EnsR: Responses produced by individual learners (upper panel) and the en-
semble (lower panel). Target responses of individual learners in blue, target responses
of the ensemble in black, real responses in red.

As can be seen from this equation, the difference between ky and the sum of
the previous learners is the new target to which the k-th learner is fitted. This
target expresses pattern y corrected by aggregated residuals of the previous
learners: y +

∑k−1
l=1 (y − fl(x)). If the aggregated residuals are much smaller

compared to the y-pattern (we expect this), the new targets at all stages of
ensembling have a similar shape to the y-pattern. So, all learners have similar
tasks to solve and it is justified for them to have the same architecture and
hyperparameters. This unburdens us from the awkward and time-consuming
task of selecting the optimal model at each stage of ensembling.

Algorithm 2 summarizes ensemble learning based on corrected targets (En-
sCT) for pattern-based forecasting. Fig. 2 shows the targets for learners at suc-
cessive stages, learners’ outputs and the ensemble outputs. It was observed that
at the initial stages of ensembling, the targets express the y-pattern shape, but
this shape degrades gradually in the later stages - see the target for K-th learner
in Fig. 2. Thus, the proposed EnsCT only partially solves the problem of incon-
sistency between tasks learned at the successive stages of ensembling.

Algorithm 2 EnsCT: Boosting based on corrected targets

Input: Base model f (RandNN), Training set Φ = {(xi,yi)}Ni=1, Ensemble size K
Output: RandNN ensemble FK
Procedure:
for k = 1 to K do

Learn fk based on Φ
Calculate ensemble response Fk(xi) = 1

k

∑k
l=1 fl(xi), i = 1, ..., N

Determine corrected targets y′k,i = (k + 1)yi − kFk(xi), i = 1, ..., N
Modify training set Φ = {(xi,y′k,i)}Ni=1

end for

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_26

https://dx.doi.org/10.1007/978-3-031-08751-6_26


Boosted Ensemble Learning based on RandNNs for TS Forecasting 7

0 5 10 15 20

hours

-0.5

0

0.5

y

Learner 1

0 5 10 15 20

hours

-0.5

0

0.5

y

Learner 2

0 5 10 15 20

hours

-0.5

0

0.5

y

Learner 3

...

0 5 10 15 20

hours

-2

-1

0

1

y

Learner M

0 5 10 15 20

hours

-0.5

0

0.5

y

Response 1..2

Ensemble output

0 5 10 15 20

hours

-0.5

0

0.5

y

Response 1..3

...

0 5 10 15 20

hours

-0.5

0

0.5

y

Response 1..M

Fig. 2. EnsCT: Responses produced by individual learners (upper panel) and the en-
semble (lower panel). Target responses of individual learners in blue, target responses
of the ensemble in black, real responses in red.

3.3 Ensemble Learning Based on Opposed Response

To prevent the degradation of the target shapes in the subsequent steps of en-
sembling, we propose ensemble learning based on opposed response (EnsOR).
The first step of the ensemble building procedure is the same as in EnsR and
EnsCT. At this stage, the base model f1(x) learns on original training set Φ. The
ensemble response is F1(x) = f1(x). The residual is calculated, r1 = y − F1(x),
and the ”opposed” response pattern is determined as follows:

ŷ′1 = y + r1 = 2y − F1(x) (5)

The opposed response pattern expresses the target pattern augmented by the
opposed error produced by the ensemble (see Fig. 3). The average of the response
pattern F1(x) and the opposed response pattern ŷ′1 gives the target pattern y.
In the next step, base model f2(x) learns on training set {(xi, ŷ′1,i)}Ni=1. Thus
it learns the opposed response to reduce the ensemble residual. The ensemble

response is calculated as the average of learners: F2(x) = f1(x)+f2(x)
2 . These

operations are repeated in the following steps (see Algorithm 3). Namely, in
step k, the opposed response pattern determined at stage k − 1, ŷ′k−1 = 2y −
Fk−1(x), becomes the target pattern for learner fk(x). The ensemble response
is the average of k learners and the loss function at stage k takes the form:

MSEk =
1

N

N∑
i=1

(
fk(xi)− ŷ′k−1,i

)2
(6)

where ŷ′k−1,i = yi + rk−1,i = 2yi − Fk−1(xi) is the opposed response pattern at
stage k − 1.
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Fig. 3. Construction of the opposed response pattern.

Algorithm 3 EnsOR: Boosting based on opposed response

Input: Base model f (RandNN), Training set Φ = {(xi,yi)}Ni=1, Ensemble size K
Output: RandNN ensemble FK
Procedure:
for k = 1 to K do

Learn fk based on Φ
Calculate ensemble response Fk(xi) = 1

k

∑k
l=1 fl(xi), i = 1, ..., N

Determine opposed response ŷ′k,i = 2yi − Fk(xi), i = 1, ..., N
Modify training set Φ = {(xi, ŷ′k,i)}Ni=1

end for

Fig. 4 shows learners’ and ensemble responses in the following steps of en-
sembling. Dashed lines express the opposed responses which become targets for
the based models in the next steps (blue lines). Note that the shape of the initial
target pattern y is maintained until the last stage. Thus, all learners learn on
similar data, and using identical base models at each stage of ensembling means
no objections can be raised, unlike in the case of EnsR.

4 Experimental Study

In this section, we verify our proposed methods of ensemble boosting on four time
series forecasting problems. These comprise short-term electrical load forecasting
problems for four European countries: Poland (PL), Great Britain (GB), France
(FR) and Germany (DE) (data was collected from www.entsoe.eu). The hourly
load time series express three seasonalities: yearly, weekly and daily. The data
period is four years, from 2012 to 2015. Atypical days such as public holidays
were excluded from the data (between 10 and 20 days a year). The forecasting
problem is to predict the load profile (24 hourly values) for each day of 2015
based on historical data. The forecast horizon is one day, τ = 1. The number of
ensemble members was K = 50. As a performance metric we use mean absolute
percentage error (MAPE). All algorithms were implemented in Matlab 2021b
and run on a ten-core CPU (Intel i7-6950x, 3.0 GHz, 48 GB RAM).
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Fig. 4. EnsOR: Responses produced by individual learners (upper panel) and the en-
semble (lower panel). Target responses of individual learners in blue, target responses
of the ensemble in black, real responses in red, and opposed responses in dashed red.

In the first experiment, we evaluate ensemble sensitivity to the base model
hyperparameters: number of hidden nodes m and size of the interval for hidden
weights αmax. Fig. 5 shows the impact of hyperparameters on the test MAPE.
Note that EnsR is the most sensitive to hyperparameters, while EnsOR is the
least sensitive. To quantitatively compare the sensitivities of the ensemble vari-
ants, as a rough measure of sensitivity to a given hyperparameter, we define
standard deviation of the test MAPE for the ensemble with optimal values of
other hyperparameters:

Sm = Std(MAPE(y, F (x, α∗max,m))) (7)

Sαmax = Std(MAPE(y, F (x, αmax,m
∗))) (8)

where the optimal hyperparameter values are marked with asterisks.
From Fig. 5, we can see that the accuracy of EnsR and EnsCT deteriorates

quickly with the number of hidden nodes and interval U size, when these hy-
perparameters exceed their optimal values. This deterioration is related to the
gradual loss of generalization for higher values of m and αmax. Deterioration
for EnsOR is much slower, which means that this approach is more resistant to
overtraining.

Table 2 shows optimal hyperparameters, test and training errors and com-
pares the sensitivities of ensembling variants. The lowest values are in bold.
Table 2 clearly shows that EnsOR performs best. This method gave the lowest
errors for each dataset and had the lowest sensitivity to both hyperparameters.
By contrast, EnsR performed worst in terms of error and sensitivity. Note that
the optimal hyperparameter values are smaller for EnsR and EnsCT than for
EnsOR. This means that the base models in these boosting variants need to be
less flexible (weaker) to prevent overfitting. Nevertheless, EnsR and EnsCT do
not perform as well as EnsOR.
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Fig. 5. Ensemble sensitivity to RandNN hyperparameters.
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Fig. 6. Ensemble error at successive stages.

Fig. 6 demonstrates test MAPE in successive steps of ensembling. We can
observe from this figure that for EnsOR the error converges faster with k than
for other ensemble variants. The convergence curve is also smoother for EnsOR
than for its competitors. For them, in many cases, adding a new member to the
ensemble causes a temporary increase in error. Moreover, it was observed for
EnsR that if the hyperparameters are too high (greater than optimal), which
means a flexible base model, the error starts to successively increase with sub-
sequent ensembling stages. This phenomenon is to a lesser degree observed for
EnsCT, but not observed for EnsOR. Fig. 7 demonstrates this problem for PL
data and m = 100, αmax = 70.

To improve further ensemble learning based on opposed response, we intro-
duce weights for training patterns which express their similarity to the query
pattern. The more similar training pattern xi to query pattern x, the higher the
weight. The similarity measure is a scalar product, xTxi. The opposed response
takes the form:
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Table 1. Optimal RandNN hyperparameters, errors and ensemble sensitivity.

Data Ensemble m∗ α∗max MAPEtst MAPEtrn Sm Sαmax

PL EnsR 20 40 1.18 0.76 0.641 0.436
EnsCT 20 60 1.15 0.72 0.092 0.174
EnsOR 40 70 1.14 0.72 0.064 0.110

GB EnsR 20 10 2.55 1.55 0.509 1.531
EnsCT 10 50 2.52 1.51 0.104 0.628
EnsOR 20 50 2.49 1.51 0.104 0.163

FR EnsR 10 10 1.65 1.27 0.466 0.853
EnsCT 10 20 1.61 1.24 0.088 0.436
EnsOR 20 40 1.57 1.20 0.058 0.069

DE EnsR 10 40 1.29 1.37 0.774 0.572
EnsCT 10 70 1.21 1.26 0.138 0.141
EnsOR 40 80 1.17 1.05 0.036 0.063
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Fig. 7. Ensemble error at successive stages for too flexible base models.

ŷ′k,i = yi + wirk,i, i = 1, ..., N (9)

where rk,i = yi − Fk(xi) is a residual vector for the i-th training pattern and
wi ∈ [0, 1] is the weight of this pattern.

In the base variant of EnsOR, the weights for all patterns are equal to one. In
typical ensemble learning, the weights are zero (the base models at each stage of
ensembling learn on the original training set Φ; such an approach we considered
in [17]). By introducing weights, we try to balance these two approaches.

As a weighting function, we consider four variants. In the simplest one, En-
sOR1, we assume that the weighting function g is just the scalar product:

g(x,xi) = xTxi (10)

To avoid negative values of (10) we can also use g(x,xi) = 1
2 (xTxi + 1) or

replace negative values with zeros.
In the second variant, EnsOR2, we sort the training patterns according to

similarity to the query pattern, from the most to the least similar. Let r = 1, ..., N
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be the rank of the training patterns in the similarity ranking. The weighting
function expresses the linear dependence of the weight on the rank:

g(x,xi) = 1 +
1− ri
N

(11)

In the third variant, EnsOR3, the weighting function expresses the non-linear
dependence of the weight on the rank:

g(x,xi) =

(
1 +

1− ri
N

)d
(12)

where d > 1 (we assume d = 4).
In the fourth variant, EnsOR4, the most similar training patterns to the

query pattern have unity weights, while the others have zero weights:

g(x,xi) =

{
1 if xi ∈ Ξκ(x)

0 if xi /∈ Ξκ(x)
(13)

where Ξκ(x) denotes a set of κ nearest neighbors of query pattern x in Φ.
An example of weights assigned to the training patterns by the above weight-

ing functions are shown in Fig. 8.
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Fig. 8. Examples of weights assigned to training pattern in different weighing variants.
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Fig. 9. Ensemble error for EnsOR4 depending on κ.

Fig. 9 allows us to evaluate the impact of the number of nearest neighbours
κ in EnsOR4 on the test MAPE. The optimal value of κ depends on the data
set: for PL κ = 14, for GB κ = 40, for FR κ = 38, and for DE κ = 8.
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Table 2. Results for EnsOR with weighted patterns.

Data EsnOR1 EnsOR2 EnsOR3 EnsOR4 RandNN [17] Ens1 [17]

PL 1.1419 1.1381 1.1329 1.1295 1.3206 1.1417
GB 2.4935 2.4804 2.4822 2.4803 2.6126 2.5148
FR 1.5668 1.5570 1.5524 1.5492 1.6711 1.5690
DE 1.1743 1.1711 1.1683 1.1655 1.3809 1.1811

Table 2 compares the proposed methods of pattern weighting. In this table
results for individual RandNN and Ens1 are also shown. Ens1 is a classical (not
boosted) ensemble of RandNN. Ens1 constructs the final forecast as an average
of the responses of RandNN, which learn simultaneously on the same training
set Φ [17]. As can be seen from this table, EnsOR4 outperformed its competi-
tors as well as classical ensembling Ens1. The much higher error for individual
RandNN justifies fully ensembling. It is worth mentioning that comparing Ens1
with other forecasting models, including statistical models (ARIMA, exponen-
tial smoothing, Prophet) and machine learning models (MLP, SVM, ANFIS,
LSTM, GRNN, nonparametric models), reported in [17] clearly shows that Ens1
outperforms all its competitors in terms of accuracy.

5 Conclusion

Forecasting complex time series with multiple seasonalities is a challenging prob-
lem, but one we solve using ensemble of randomized NNs. We propose three
methods of boosting the RandNN ensemble. We showed that in ensemble learn-
ing based on residuals, the base models have different tasks to solve at successive
stages of ensembling. Thus, the base model which is optimal at a given stage
may not be optimal at other stages. To avoid having to select an optimal model
at each stage of ensembling, which is unreasonable and too time-consuming, we
propose to unify the tasks solved at all stages. Doing so allows us to use the same
base model (the same architecture and hyperparameters), RandNN in our case,
which is optimal for all stages. To unify the tasks, we propose ensemble learning
based on corrected targets and ensemble learning based on opposed response.
The latter proved to be more resistant to task degradation at subsequent stages.

The experimental studies performed on four forecasting problems expressing
triple seasonalities confirmed that the opposed response-based approach out-
performs its competitors in terms of forecasting accuracy as well as sensitivity
to both the base model hyperparameters and ensemble size. Further improve-
ment of the winning solution was achieved by weighting the training patterns
according to their similarity to the query pattern.

In further research, we plan to develop the opposed response-based approach
for other types of learners, e.g. decision trees, and other types of problems (re-
gression, classification).
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