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Abstract. Self-supervised methods gain popularity by achieving results
on par with supervised methods using fewer labels. However, their ex-
plaining techniques ignore the general semantic concepts present in the
picture, limiting to local features at a pixel level. An exception is the
visual probing framework that analyzes the vision concepts of an image
using probing tasks. However, it does not explain if analyzed concepts
are critical for target task performance. This work fills this gap by intro-
ducing amnesic visual probing that removes information about particular
visual concepts from image representations and measures how it affects
the target task accuracy. Moreover, it applies Marr’s computational the-
ory of vision to examine the biases in visual representations. As a result
of experiments and user studies conducted for multiple self-supervised
methods, we conclude, among others, that removing information about
3D forms from the representation decrease classification accuracy much
more significantly than removing textures.
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1 Introduction

Visual representations are critical in many computer vision and machine learning
applications. The spectrum of these applications is broad, starting with visual
search [21] to image classification [16] and visual question answering [3]. How-
ever, supervised representation learning requires a large amount of labeled data,
usually time-consuming and expensive. Hence, self-supervised methods gain pop-
ularity, achieving results on par with supervised methods using fewer labels [6,
8, 13].

Along with the increasing proliferation of self-supervised methods for repre-
sentation learning, there is a growing interest in developing methods that allow
the interpretation of the resulting representation space and draw conclusions re-
garding the information it conveys. However, most of them focus on supervised
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Fig. 1: Amnesic visual probing removes a specific visual concept (here corre-
sponding to fur) from the self-supervised representation of an image (here corre-
sponding to a wolf). As a result, the probing classifier cannot detect the presence
of fur in the representation, and the target task accuracy decreases. The level of
decrease represents the importance of the considered concept.

approaches and study local features at a pixel level [2, 20]. At the same time, the
general semantic concepts present in the image are often overlooked, and their
influence on model decisions is unknown. From this perspective, an exception is
visual probing [4] that analyzes the vision concepts of an image using probing
tasks. The probing tasks provide information about the presence of visual con-
cepts in the representations but do not explain if they are critical for target task
performance.

In this work, we overcome this limitation, providing a method that investi-
gates the importance of visual features in the context of target task performance,
referring to the amnesic probing [10] used in natural language processing (NLP).
We remove information about particular visual concepts from image representa-
tions using the Iterative Nullspace Projection [19] and measure how it affects the
target task accuracy. In addition, we conduct user studies to describe the visual
concepts using Marr’s computational theory of vision [17]. As a consequence, we
can examine the biases in image representations.

Our contributions can be summarized as follows:
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– We propose amnesic visual probing, a method for analyzing which visual
features impact the performance of a target task.

– We apply Marr’s computational theory of vision to examine the biases in
visual representations.

– We conduct a complete user study and assign automatically generated visual
concepts to one of six visual features from Marr’s computational theory of
vision.

2 Related Works

Our work corresponds to two research areas: self-supervised learning and probing
tasks. We briefly cover the latest achievements in these two topics in the following
paragraphs.

Self-supervised image representations Image representations obtained in a self-
supervised manner are increasingly popular due to the competitive performance
compared to supervised approaches. It is because they leverage the power of
datasets without label annotations. One of the methods, called MoCo v1 [14],
is based on a dictionary treated as a queue of data samples. It contains two
encoders for query and keys, which are matched by contrastive loss. This queue
enables to use of a large dictionary of examples previously limited to the batch
size. SimCLR v2 [8] is another powerful method, which builds upon its pre-
decessor, SimCLR [7] that maximizes the agreement between two views of the
same sample by contrastive loss. In [8], the authors use a deeper and thinner
backbone (ResNet-152 3x), deepen the projection head, which is not removed
after contrastive training, and adapt memory mechanism from MoCo to increase
the pool of negative examples. SwAV [6] takes advantage of contrastive methods.
However, it compares clusters of data instead of single examples. The consistency
between clusters, which can be seen as views of the same data sample, is enforced
by learning to predict one view from another. In contrast to the above methods,
BYOL [13] does not use the explicitly defined contrastive loss function, so it
does not need negative samples. Instead, it uses two neural networks, referred
to as online and target networks, that interact and learn the representation of
the same image from each other.

Probing tasks The probing tasks originally come from Natural Language Pro-
cessing (NLP). Their objective is to discover the characteristics interpretable by
humans, which are encoded in the representation obtained by neural networks [5].
Probing is usually a simple classifier applied to trained representations like word
embeddings. The probing classifier predicts whether the linguistic phenomenon
that we want to verify exists or not. The probing classifiers in the NLP research
community are popular tools for inspecting the internals of representations. How-
ever, some recent work extends the usability of probing tasks by introducing the
concept of amnesic probing [10] to measure the influence of the phenomenons on
the target task performance.
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Although probing tasks are popular in NLP, they only recently have been
adapted to the Computer Vision (CV) domain in [4] based on the mapping
defined between NLP and CV domains. These visual probing tasks allow one to
gain intuition about the knowledge conveyed in the representation by the various
self-supervised methods. However, there is no clear consensus on their impact
on the target task performance.

3 Methods

This section introduces amnesic visual probing (AVP), a tool for explaining
visual representations. It analyzes how important are particular visual concepts
for a target task. Therefore, to define AVP, we first provide visual concepts (here
called Visual Words, VW) and then obtain their meaning. Finally, we remove
information about VW from the representation and analyze how it influences a
target task.

Generating visual words To generate visual words, we use the established ACE
algorithm [12]. It starts by dividing the image into superpixels using the SLIC
algorithm [1]. Because different superpixel sizes are preferred, we run the algo-
rithm three times with different parameters and obtain three sets with 15, 50,
and 80 superpixels for each image. Then, we pass all the superpixels through the
network trained on ImageNet to obtain their representations. These representa-
tions are clustered separately for each class using the k-means algorithm with
k = 25 (infrequent and unpopular clusters are removed as described in [12]).
Clusters obtained this way could be directly used as visual words. However, so
many visual words would be impractical due to the similarity between concepts
of ImageNet classes. Therefore, to obtain a credible dictionary with visual words
shared between different classes, we filter out concepts with the smallest TCAV
score [15] and cluster the remaining 6,000 ones using the k-means algorithm into
N = 50 new clusters. These N clusters are visual words that form our visual
language (see Fig. 2).

Cognitive vision systematic To obtain the meaning of the generated visual words,
we use cognitive visual systematic [18] based on Marr’s computational theory
of vision [17]. According to Marr’s theory, three levels of visual representations
play an essential role in perception and discovering essential features of visible
objects. These are the primal sketch, the 2.5D sketch, and the 3D model rep-
resentation. The primal sketch is a two-dimensional image representation that
uses light intensity changes, edges, colors, and textures. The 2.5D sketch repre-
sents mostly two-dimensional shapes, and the 3D model representation allows
an observer to imagine the spatial object features based on its two-dimensional
image. We will analyze six visual features from Marr’s theory: brightness, color,
texture, and lines (all primal sketch), shape (2.5D sketch), and form (3D model
representation). We conduct user studies to establish the relationship between
these features and individual visual words (see Fig. 3).
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Fig. 2: Sample visual words, each represented by a row of 5 superpixels.

Amnesic visual probing We want to remove the information about a visual word
from the representations and analyze how they differ from the original ones. For
this purpose, we divide an image into superpixels, pass them through the network
to obtain their representations, and assign them to the closest visual word. Then,
we define Word Content labels zi ∈ {0, 1}N for representations xi ∈ Rd, where
zi[j] = 1 means that at least one superpixel of i-th image is assigned to j-th
visual word.

Then, we remove information about j-th visual word from a representation
xi. For this purpose, we adapt an algorithm called Iterative Nullspace Projection
(INLP) [19]. The probing classifier for zi[j] is parameterized by the matrix W0.
We first construct a projection matrix P0 such that W0(P0xi) = 0 for all rep-
resentations xi (using method from [19]). Then, we iteratively train additional
classifiers W1 and perform the same procedure until no linear information re-
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Fig. 3: Sample visual word (corresponding to grass) and its distributions of Likert
scores obtained from user studies. One can observe that users mostly decided to
assign this word to color and texture from the Marr’s computational theory of
vision.

garding zi[j] remains in xi, i.e., until the chance of predicting the presence of a
j-th visual word by the linear model is random. As a result we obtain a matrix
Pn · Pn−1 · . . . · P0 which, when applied to representation, removes information
about visual word j.

Finally, one can analyze changes in target task performance after removing
information about a particular visual word. In this case, a target task is de-
fined as multi-class classification with labels yi ∈ {1, . . . , k}, where k = 1000
is the number of ImageNet’s classes. It is trained and tested for two types of
representations, original and with removed visual word information.

4 User studies

To understand the meaning of visual words, we conduct user studies with 97 vol-
unteers (64 males, 32 females, and 2 others aged 25 ± 7 years), including 71.1%
students or graduates of computer science and related fields. Users completed
an online survey with the number of questions corresponding to the number of
visual words. We presented 12 typical (randomly chosen) superpixels for each
visual word, and we asked to what extent a particular visual feature was essential
for its creation. In reference to Marr’s computational theory of vision [17] (see
Section 3), six features were taken into consideration: brightness, color, texture,
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Algorithm 1 Amnesic visual probing (AVP)
Require: X – set of image representations, Y – set of target labels, Z – set of visual

words labels, C – codebook of visual words,
getNullSpaceProj(X,Z) – returns projection matrix that removes information about
a visual word from representations,
trainValProb(X,Z) – trains model on probing task and returns validation accuracy,
trainValTarget(X,Y ) – trains model on target task and returns validation accuracy

for each: c ∈C
Xproj ← X
repeat

P ←getNullSpaceProj(Xproj , Z)
Xproj ← PXproj

accprob ←trainValProb(Xproj , Z)
until accprob ≥ 1

2

acctarget ←trainValTarget(X,Y )
acc¬c

target ←trainValTarget(Xproj , Y )
influencec = acc¬c

target − acctarget

lines (all primal sketch), shape (2.5D sketch) and form (3D model represen-
tation). We use the Likert scale with seven numerical responses from 1 to 7,
corresponding to insignificant and key features, respectively.

Before completing the survey, users got familiarized with the examples of
visual words with particular features selected by a trained cognitivist. They also
completed two training trials to become familiar with the main task. Moreover,
completing the task was not limited in time. Finally, due to the high number
of visual words, assessing all 50 visual words would be tedious for the users.
Therefore, we have prepared four questionnaire versions (one with twenty visual
words and three with ten visual words) and assigned them to users randomly.

Based on the user studies results, we ranked the most representative visual
words for each of the six features: brightness, color, texture, lines, shape, and
form. We used those rankings to obtain detailed results of the amnesic visual
probing.

5 Experimental Setup

Models We examine four self-supervised methods (MoCo v1 [14], SimCLR v2 [8],
BYOL [13], and SwAV [6]), with a publicly available implementation based on
the ResNet-50 (1x) architecture, trained on the entire ImageNet dataset5. We
use the penultimate layer of ResNet-50 to generate representations with a length
of 2048.

5 We use the following implementations of the self-supervised methods:
https://github.com/{google-research/simclr, yaox12/BYOL-PyTorch, facebookre-
search/swav, facebookresearch/moco}.
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Data and target task We consider ImageNet [9] classification as the target task,
but our approach could also be applied to other tasks. In order to get the clas-
sification model, we freeze the self-supervised trained model and fine-tune an
ultimate fully-connected layer for 100 epochs. We conduct our experiments with
a standard train/validation split.

Removing visual words Interventions that remove visual words are parametrized
by 2048 × 2048 matrices applied to self-supervised representations. We obtain
these matrices with our adaptation of the INLP algorithm, where we iterate until
the probing classifier (detecting a visual word) achieves random accuracy.

Metric We consider the difference in top-5 classification accuracy before and
after the intervention. For each self-supervised method, we carry out a series of
interventions, removing the information about successive visual words from the
ranking obtained based on the user studies (see Section 4). For each of the six
features, we start with visual words considered as crucial for a given feature.

6 Results

As shown in Table 1, removing visual words from self-supervised representations
reduces the top-5 accuracy of the target task. It is expected because, as presented
in [4], image representation contains semantic knowledge. However, depending
on a self-supervised model and a type of visual word, the level of degradation sig-
nificantly differs. In the case of SimCLR v2, visual words related to the shape and
form have the most significant influence on the classifier decisions. For BYOL,
brightness and form have the greatest influence. Results for SimCLR and BYOL
are also similar because they are least sensitive to texture removal from the rep-
resentations. In contrast, MoCo and SwAV are the least sensitive to removing
shape. In the case of MoCo, we also observe the most significant decrease in
classification accuracy when removing forms, while the performance of SwAV is
the most sensitive to color removal.

In Fig. 4, we present the most important visual words (according to our user
studies) for each of the six visual concepts from Marr’s computational theory of
vision. These are visual words that we first remove from the representation.

In general, except for MoCo v1, representations are the least sensitive to
removing textures from representations, which is inconsistent with what is found
in [11]. Also, the two-dimensional shape is the most influential feature only for the
classifier using the SimCLR v2 model. On the other hand, on average, removing
visual words corresponding to the three-dimensional form and color from the self-
supervised representation causes the most significant drop in the classification
accuracy.

In Fig. 5, we present the change of target task accuracy when removing the
successive most important visual words of the considered Marr’s visual features
(obtained with user studies). In general, the classification accuracy decreases as
we remove the successive visual words. There are only a few exceptions to this,
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Table 1: Removing visual words from the self-supervised representations influ-
ences the top-5 accuracy. The results are presented for six visual concepts from
Marr’s computational theory of vision. For each visual feature we remove five
visual words according to the ranking obtained based on the user studies. The
colors denote higher (dark blue) or lower (light blue) accuracy drop (in percent-
age points). These results demonstrate the biases in the self-supervised repre-
sentations.

top-5 acc. decrease in top-5 acc.
no interv. remove visual words

bright. color texture lines shape form
MoCo v1 82.5 −3.09 −4.27 −3.84 −4.04 −2.98 −4.73
SimCLR v2 86.0 −2.00 −2.44 −1.60 −1.68 −2.51 −2.51
BYOL 86.5 −3.99 −3.37 −2.35 −2.75 −2.36 −3.49
SwAV 92.4 −2.20 −2.94 −1.56 −1.85 −1.00 −2.09

most notable in the case of SimCLR v2. We notice that in some cases, after
removing two or three visual words from a given category, deleting the next
ones causes only a slight further decrease in accuracy. It happens, for example,
when removing visual words related to shape from SwAV representations or
texture from SimCLR v2 representation. We also notice that in the case of
three models (except MoCo v1), initially, when removing a small number of
visual words, the most significant loss of accuracy occurs when removing the
simplest visual features such as brightness (BYOL and SwAV) and color (SwAV
and SimCLR v2). However, as we remove more visual words, the impact of
removing more complex visual words corresponding to three-dimensional forms
increases. This result may be because three-dimensional forms are more diverse
and heterogeneous than colors and brightness.

Amnesic visual probing vs. Word Content probing task The correlation between
the results of amnesic visual probing and the Word Content (WC) probing task is
relatively weak, as presented in Fig. 6. The Pearson correlation coefficient ranges
from 0.14 for SimCLR v2 to 0.52 for MoCo v1. In Fig. 6 we can see that although
the WC probing task shows that there is a similar level of information about
the visual words corresponding to lines and forms in SimCLR’s representation,
removing forms from this representation causes a much more significant decrease
of target task accuracy than removing lines. The same relationship regarding
lines and forms is also valid for BYOL, in which case the correlation between
target task accuracy and WC results is the largest among the examined methods,
even though it is still weak.

In general, this weak correlation supports the thesis that the WC probing
task focuses on what visual words are encoded in the representation, but it does
not assess how this information is used. Therefore, we conclude that the Word
Content probing task cannot be directly used to evaluate target task accuracy,
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(a) Brightness. (b) Color.

(c) Texture. (d) Lines.

(e) Shape (2D). (f) Form (3D).

Fig. 4: The most important visual words (according to our user studies) for each
of the six visual concepts from Marr’s computational theory of vision.

which justifies the introduction of amnesic visual probing. Nevertheless, WC is
still needed for amnesic visual probing to analyze the representation and should
be considered as a complementary tool.
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Fig. 5: Decrease in top-5 accuracy (in percentage points) when removing the in-
formation about successive visual words according to the ranking obtained based
on the user studies, presented for six visual concepts from Marr’s computational
theory of vision.

7 Conclusions

The visual probing framework provides interesting insight into the self-supervised
representations. However, this insight does not correspond to the performance
of the target task. Hence, we propose Amnesic Visual Probing (AVP) to analyze
the visual concepts that influence the target task. Thanks to preserving the se-
mantic taxonomy of visual words from the visual probing framework, we can use
AVP to examine and compare the biases of individual self-supervised methods.
Finally, the user studies allow us to describe those biases using six visual features
from Marr’s computational theory of vision.
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