
Weakly-supervised cell classification for effective
High Content Screening⋆

Adriana Borowa1,2[0000−0003−3387−6079], Szczepan Kruczek3, Jacek
Tabor1[0000−0001−6652−7727], and Bartosz Zieliǹski1,2[0000−0002−3063−3621]
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Abstract. High Content Screening (HCS) allows for a complex cell anal-
ysis by combining fluorescent microscopy with the capability to automat-
ically create a large number of images. Example of such cell analysis is
examination of cell morphology under influence of a compound. Never-
theless, classical approaches bring the need for manual labeling of cell
examples in order to train a machine learning model. Such methods
are time- and resource-consuming. To accelerate the analysis of HCS
data, we propose a new self-supervised model for cell classification: Self-
Supervised Multiple Instance Learning (SSMIL). Our model merges Con-
trastive Learning with Multiple Instance Learning to analyze images with
weak labels. We test SSMIL using our own dataset of microglia cells
that present different morphology due to compound-induced inflamma-
tion. Representation provided by our model obtains results comparable
to supervised methods proving feasibility of the method and opening the
path for future experiments using both HCS and other types of medical
images.

Keywords: High Content Screening · Weakly-supervised learning · Self-
supervised learning · Multiple Instance Learning.

1 Introduction

High Content Screening (HCS) is used to identify changes in a cell phenotype
caused by e.g. small molecules or RNA [12]. The main application of HCS is the

⋆ The works are carried out under contract no. POIR.01.01.01-00-0878/19-00, as:
,,HiScAI - Development of cell-based phenotypic platform based on high content
imaging system integrated with artificial intelligence data analysis for neuroinflam-
matory and fibrosis drug discovery”, co-financed by the European Regional Devel-
opment Fund under the Smart Growth Operational Programme, Submeasure 1.1.1.:
Industrial research and development work implemented by enterprises.
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Fig. 1. High Content Screening data: Starting from left, the first part of the figure
present an entire HCS plate containing 96 wells. Wells marked red contain negative con-
trol samples – without any compounds – cells are not inflamed and they are elongated
with rather smooth borders and visible long processes. Wells marked green contain pos-
itive control samples with LPS induced inflammation cells, they get smaller, rounder,
and develop short ’spikes’. Wells marked blue contain LPS and CLI-095 compound, the
darker the color the higher the CLI-095 concentration and the bigger influence of the
compound – cells are less inflamed and more similar to the positive control. Each well
contains 49 microscopic images as presented in the middle of the figure. On the right,
we present examples of final microscopic images and patches extracted from them. Top
patches present cells from negative control and the bottom patches present cells from
positive control.

drug discovery process where it accelerates screening of potential therapeutic
compounds. Images are created using fluorescent reagents which mark specific
cell structures, proteins, or DNA in a cell to measure its characteristic, e.g.
chromatin in a nuclei [16], or perform more complicated tasks, like mode of
action recognition [2].

Our work focuses on morphological changes in a microglia cell as a marker of
inflammation. Activated microglia cells are key mediators of the chronic neuroin-
flammatory process, which is associated with the pathogenesis of many neurode-
generative disorders. During activation, apart from changes in the expression
of surface antigens and production of pro-inflammatory factors, microglia also
change their morphology, which is characterized by ameboid shape with many
shortened processes [30,33]. Analyzing morphological changes can be, therefore,
relevant in the determination of microglia activation and, as a consequence, can
be useful for development of bioassays for the drug discovery process.

In our experiment, cells are treated with bacterial lipopolysaccharides (LPS)
to induce inflammation and then treated with CLI-095 [17] to decrease it. To
measure the influence of compounds, a biologist performs a quantitative analysis
of cells to find how many cells are inflamed or active. Such analysis is performed
semi-automatically because it requires a human to provide examples of both
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active and inactive cells to a HCS analysis software4. Then, a linear machine
learning model is trained to classify cells using morphological features, such as
color intensity, cell shape and size. The main disadvantage of this procedure is
an expensive and time-consuming step of manual cell labelling.

The goal of this work is to introduce a weakly-supervised method that can
classify active and inactive cells, using a label of the entire image instead of
single cells.

HCS images contain a variable number of cells which additionally react differ-
ently in response to the compound. Nevertheless, only one label, describing cell
activity derived from a compound concentration, is assigned to an image. Prob-
lem with an input data point containing multiple instances, called the Multiple
Instance Learning [10], often occurs in medical data, where it is too expensive
and impractical to annotate details of an image. Similarly, in HCS images it is
impossible to annotate every single cell for training purposes. In consequence,
MIL is a perfect approach for such a problem, it is typically a weakly-supervised
learning task with a goal of predicting a label for an entire image or a bag of
data points. However, we want to broaden this idea by using MIL in a self-
supervised setup to create an image representation that can be used to classify
single instances. Our contributions are as follows:

– We propose a method for an instance level cell classification based on image
level labels and apply it to HCS images.

– We introduce a novel position-aware Self-Supervised Multiple Instance Learn-
ing method (SSMIL) that combines Contrastive Learning and Multiple In-
stance Learning approaches.

– We demonstrate usability of our method with detailed tests conducted by
both Machine Learning researchers and molecular biologists.

2 Related works

Firstly, we present current research in the field of High Content Screening, both
using Deep Learning and classic approaches. Later, we summarize works on
weakly-supervised and self-supervised learning with focus on Contrastive Learn-
ing.

2.1 High Content Screening

There are two main streams of High Content Screening image analysis: using
classic hand-crafted features and deep learning methods. The first one utilizes
morphological features that describe single cell and population-wide character-
istics. Almost all manufacturers of HCS imagers provide image analysis software
that uses such features, but noticeably more and more often Deep Learning mod-
ules are also provided. One of the most popular software is CellProfiler [5] which
is free and open source. CellProfiler features were used for breast cancer detection

4 https://www.perkinelmer.com/product/harmony-4-8-office-hh17000001
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by creating hidden representations from an autoencoder model that reconstruct
those hand-crafted features [21]. Also, they were used with regression models to
predict phenotype [19, 35] and with Random Forests [31] for compound func-
tional predictions. In recent years researchers also started to use Deep Learning
methods for HCS analysis. [34] used a convolutional autoencoder to find abnor-
mal cells by comparison to control images using deep learning features and [24]
used variatonal autoencoders to show variation in cell phenotypes. At the same
time, [14] used GANs for cell modelling. Convolutional neural networks are very
widely used, [1,3,22,23] and [29] even show that ImageNet-trained network can
be successfully used to create features without fine-tuning. Additionally, some
multi-scale CNN-based architectures were developed, [9, 13, 20]. Deep learning
shows great results and the only disadvantage so far is lack of easy biological
interpreatability of Deep Learning features.

2.2 Weakly-supervised learning

Weakly-supervised methods arise from the need to train models in case of lack
of manual labels because, most often, only partial labels are available, e.g. in
whole-slide images. CLAM [27] approaches this problem by performing instance-
level clustering and then attention pooling in pathology classification. Similar
problem to ours occurs in satellite images which are large and hard to annotate,
it was tackled by use of stacked discriminative sparse autoencoder (SDSAE) [36].
Moreover, WELDON [11] automatically selects relevant regions by top-instance
scoring.

2.3 Self-supervised learning

Self-supervised methods can create meaningful image representation without
labels using so-called Contrastive Learning. Its main goal is to create similar
representation for similar images, e.g. created by different augmenting of the
same image. This is a base for Contrastive Predictive Coding (CPC) [28] which
introduces contrastive loss and SimCLR [6, 7] which proposes NT-Xent loss.
BYOL [15] transforms that idea by assigning online and target network, online
network is trained continuously, while weights of the target network are the
moving average of the first one. On the other hand, SwAV [4] utilizes swapped
prediction mechanism and clustering, while SimSiam [8] simplifies contrastive
idea by removing projection head from one of the paths and show that both
representations (projected and not) are similar. So far, contrastive learning was
used in MIL problems to create representation by training patch-level models [25,
26]. Our model utilizes it to compare image-level representation but pooling
information from the model on the instance level to train a classifier for patches.

3 Data

HCS images are acquired from a high throughput microplate using an imager.
Samples are prepared with multiple fluorescent dies which results in images with
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various numbers of channels, even up to 6. In our experiment, cells were stained
with two dyes: Hoechst 33342 and CellMask Deep Red Plasma Membrane. Mi-
croplate, or simply plate, has multiple wells organized into rows and columns.
Each well consists of multiple images assigned to fields. In our case, the plate
contains almost half a million cells with on average 150 cells per field and, in
consequence, per image. Our plate is organized as follows (see Fig. 1): 2 columns
contain controls (negative control does not contain any compound, positive con-
trol contains LPS which induces inflammation, called cell activity), 8 consecutive
columns contain CLI-095 compound in decreasing concentration: from 1.45µM
to 0.005µM . CLI-095 is meant to decrease inflammation: the higher the concen-
tration the smaller the inflammation (activity). In our training procedure, we
treat negative control as having maximum concentration and positive control as
having minimum concentration.

3.1 Data acquisition

BV2 microglia cells (Elabscience) were maintained in Dulbecco’s modified Ea-
gle’s medium (DMEM) with 4.5 g/l glucose containing 5% (v/v) fetal bovine
serum (Gibco), 1 mM sodium pyruvate (Gibco), 2mM L-glutamine (Gibco), 100
U/ml penicillin and 100 µg/ml streptomycin (Gibco) at 37◦ C in a humidified
atmosphere containing 5% CO2. For study of morphological changes, BV2 cells
were plated in assay medium (DMEM with 4.5 g/l glucose containing 1% (v/v)
fetal bovine serum, 1 mM sodium pyruvate, 2mM L-glutamine , 100 U/ml peni-
cillin and 100 µg/ml streptomycin) in poly-D-lysine coated CellCarrier Ultra
96-well plate (PerkinElmer) at density of 2000 cells/well. 24 hours later, cells
were preincubated with different concentrations of CLI-095 in assay medium for
30 minutes, followed by stimulation with 0.1 µg/ml ultrapure LPS (Invivogen)
and appropriate concentrations of CLI-095 in assay medium for further 24 hours.
Final concentration of DMSO (CLI-095 solvent) was normalized to 0.0725%. Af-
ter stimulation, cells were fixed with 4% formaldehyde for 25 minutes and washed
with PBS 3 times. Then, nuclei were stained with Hoechst 33342 (TOCRIS) at
the concentration of 5 µg/ml in PBS for 5 minutes and washed with PBS 3
times for 5 minutes. Then, cellular membrane was stained with CellMask Deep
Red Plasma membrane (Invitrogen) at the dilution of 1:3000 in PBS for 10 min-
utes and washed with PBS 3 times for 5 minutes. Plates were then sealed and
images were acquired with Operetta CLS (PerkinElmer) high content imaging
system at conditions provided in Tab,1. Images were initially analyzed with use
of Harmony software with Phenologic module (PerkinElmer).

3.2 Data labelling

Harmony is a software used along HCS Imager. It helps with image acquisition
and experiment orchestration. Harmony has a basic image analysis function and
can find and segment cells as well as provide morphological characteristics. Based
on those, it uses Linear Regression (provided in the Phenologic module) to divide
cells into up to 6 classes. Human operator selects training examples for each class
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Table 1. Conditions of image acquisition.

General settings

Autofocus Two Peak
Objective 20x with water immersion, NA 1.0
Mode Confocal
Binning 2

Channel settings

Hoechst 3334 CellMask Deep Red Plasma Membrane

Excitation 355-385 nm 615-645 nm
Emission 430-500 nm 655-760 nm
Time 60 ms 60 ms
Power 40% 20%
Height −6.0µm −11.0µm

and software marks the rest of the data with those classes. We use Harmony
labels as the ground truth. Cells might be in a transitional state which makes
labels noisy and even a human operator is not able to distinguish between them.
To assure correctness of the label, we take into account regression scores, which
are also provided by Harmony, and use only cells with top and bottom 5% of
values.

4 Methods

We introduce a novel position-aware method called SSMIL, which we compare to
three baselines, two of which are supervised and one is self-supervised. Supervised
methods include:

– Convolutional neural network (CNN) trained to classify cell activity based
on image-level labels. We use ResNet-18 with single patches as an input and
image labels.

– Attention-based Multiple Instance Learning Pooling (AbMILP) which aggre-
gates all patches from an image to create one representation vector describing
the entire image [18]. Additionally, we test its extension called Self-Attention
Attention-based MIL Pooling (SA-AbMILP) [32].

A self-supervised baseline method is SimCLR [6] which is a contrastive method
trained on patches containing single cells. The backbone of all methods is ResNet-
18 to remove an influence of the CNN architecture.

4.1 Position-aware Self-Supervised Multiple Instance Learning
method (SSMIL)

SSMIL, presented in Fig.2, combines Contrastive Learning and Multiple Instance
Learning approaches. Following paragraphs describe each step of the model
trained in an end-to-end manner.
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Supervised training on image-based labels
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Self-supervised training using contrastive learning
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Fig. 2. Training pipeline: In the preprocessing step, we normalize images and remove
those with quality issues, create patches and filter them due to size. In the training
step, supervised models use compound’s concentration as the output of a model and
self-supervised models are trained in the contrastive manner. Then, we extract features
from the ultimate (SSL) or penultimate (SL) layer of the CNN and we train Logistic
regression using those features. LR is trained using cell activity based on the label of
the entire image. Finally, we test our representation using ground-truth obtained with
Harmony software. Additionally, we present the pipeline of the SSMIL model. Patches
are augmented using two sets of transformations: T1 and T2, then passed through
CNN to obtain patch representation which is aggregated using the pooling model to
create representation of an entire image. Lastly this representation is passed through
the projection module (MLP), and we calculate contrastive loss.

Augmentation. An image is split into patches generated for each previously
detected cell. Then patches are transformed using two sets of augmentations, T1
and T2, to create two sets of patches.

Representation generation. Each patch is passed through a convolutional neural
network to obtain its representation. In our setup, we use ResNet-18 without the
classification layer. A patch representation is enriched by adding patch position
at the end of the feature vector pooled from CNN. This information takes ad-
vantage of the fact that cells in the sample may influence each other, e.g. close
cells might squeeze each other.

Aggregation. In the aggregation step, all patch feature vectors of the same image
are pooled to create one feature vector representing an entire image. In this work,
we use attention-based MIL pooling [18]:

z =

K∑
k=1

akhk, (1)
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where hk is embedding of kth patch and

ak =
exp(wT tanh(VhT

k ))∑K
j=1 exp(w

T tanh(VhT
j ))

(2)

with w and V as trainable parameters.

Projection. Image feature vector is projected as according to [6] it is beneficial
to use projection instead of feature vector. Projection corresponds to a 3-layer
MLP.

Contrastive loss. Finally, we calculate contrastive loss using NT-Xent loss [6]:

LNT−Xent(xi,xj) = − log
exp(sim(xi,xj)/τ)∑2N

k ̸=i 1[k ̸=i] exp(sim(xi,xk)/τ
(3)

where τ is temperature coefficient, sim is cosine similarity, and N is a batch
size.

5 Experimental setup

Training and testing procedure for all models is presented in Fig.2 and is de-
scribed in consecutive paragraphs.

Train-test split. We utilize the plate’s structure to create a train-test split. The
HCS plate is arranged in wells by rows and columns. Each well contains multiple
fields (in our case 49). Our dataset has samples in 6 rows and we used 5 of them to
select subsets. Rows are used in 5-fold split to create training (4 rows) and testing
(1 row) datasets. Testing datasets are then filtered and we use only patches that
have very high or low regression values, as given by Harmony software, to assure
high confidence in labels used in testing. Our dataset is imbalanced because some
cells die during the experiment due to induced inflammation.

Data preprocessing and patch generation. Cells are detected using Harmony
software which also provides a bounding box enclosing a cell. We create 224×224
patches with the cell in the middle. Patches that are too close to the image border
(112 pixels or less) and smaller than 500px2 are discarded to remove debris
and cells that might not be correctly segmented. Finally, patches are resized to
112× 112 pixels and normalized.

Supervised and self-supervised training. Supervised models are trained to classify
patches (CNN) or images (AbMILP, SA-AbMILP) using activity labels based on
the compound concentration. We assign active to columns with highest concen-
tration of negative control and inactive to the lowest concentration columns and
positive control. Self-supervised models (SimCLR, SSMIL) are trained in con-
trastive matter without any knowledge about the label. All models are trained
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using Adam optimizer with learning rate lr = 0001. CNN is trained with batch
size 128, SimCLR with batch size 1024. AbMILP, SA-AbMILP, and SSMIL are
trained with batch size 8 which translates to on average 1200 patches. We use
color jitter and rotation augmentations to minimize size changes of cells.

Feature extraction. Next, we create a patch representation from AbMILP, SA-
AbMILP, SimCLR, and SSMIL models. The patch representation is given by
feature vectors pooled from the last layer of CNN.

Logistic Regression training. In this step, we train Linear Regression using a
patch representation to classify the cell activity. For training we use columns
with the highest and lowest concentration to assure that the label is as correct
as possible.

Logistic Regression testing. The last step of the procedure is testing. Linear
regression models, trained in the previous step, are tested against labels obtained
from Harmony+Phenologic software. CNN model is tested by using its direct
prediction.

6 Results

Fig. 3. Results: we present ROC AUC values for models trained with various fractions
of training dataset. Our model SSMIL achieves on par results with supervised models
and when trained on only 1% training data achieves 3.4% higher ROC AUC than other
models, even supervised ones.

Results of our methods as well as baseline methods are presented in Fig. 3.
We present ROC AUC (Receiver Operating Characteristic Area Under Curve)
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values for Linear Regression models trained with 100%, 50%, 20%, 10%, 5% and
1% of the training data. Using 100% of training data SSMIL achieves ROC AUC
of 0.8547± 0.0129 while AbMILP and SA-AbMILP have ROC AUC of 0.8593±
0.0104 and 0.8415±0.0147, respectively. This shows that all models achieve very
similar results and that by using self-supervised methods, we can obtain as good
representation as in supervised setup. What is more, in all setups we achieve ROC
AUC greater than 0.8 when we decrease size of training dataset to 20% of data or
even 10% in case of SSMIL and supervised AbMILP. Worth noting is the fact that
our model, SSMIL, achieves on average 3.4% better results than other models
when trained only on 1% of data with SSMIL having ROC AUC of 0.6498±0.0102
while other methods have ROC AUC of 0.6283 ± 0.0076, 0.6265 ± 0.0125, and
0.6283± 0.0088 (AbMILP, SA-AbMILP, and SimCLR respectively).

activeinactive

in
ac
tiv
e

ac
tiv
e

H
ar
m
on

y

SSMIL

Fig. 4. Qualitative confusion matrix between Harmony labels and SSMIL predictions.
SSMIL returns incorrect predictions for active cells mostly when those cells are de-
stroyed or there are clumps of multiple cells. Similarly, the model incorrectly predicts
inactive cells when they are too close to each other. In some cases we can see that cells
labeled as inactive by Harmony are round and processes are not visible.

Fig.4 presents a qualitative confusion matrix which shows cells that were
correctly and incorrectly predicted by the SSMIL model. We notice that SSMIL
gives wrong predictions when faced with cells destroyed during the experiment.
Additionally, the model can be confused by clumps of cells which can be miti-
gated by better segmentation which on its own can be a challenge when cells are
touching.
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7 Conclusions

We presented a weakly-supervised problem of cell classification using HCS data
and compared 4 approaches to solve this problem in both supervised manner
with CNN or MIL pooling, and using self-supervised methods, SimCLR and
SSMIL proposed by us. We show that using either patch or image level Con-
trastive Learning provides representation as good as training a supervised model.
Finally, we introduced a new contrastive learning method, SSMIL, that creates
patch-level representations using aggregation and image-level labels and can be
successfully trained even with an imbalanced data or a small number of training
samples.
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